WJM  Vol.2 No.3 , June 2012
Analysis of Dynamics Fields in Noninertial Systems
Author(s) Gabriel Barceló
ABSTRACT
In this paper, I present evidence that there exists an unstructured area in the present general assumptions of classical mechanics, especially in case of rigid bodies exposed to simultaneous noncoaxial rotations. To address this, I propose dynamics hypotheses that lead to interesting results and numerous noteworthy scientific and technological applications. I constructed a new mathematical model in rotational field dynamics, and through this model, results based on a rational interpretation of the superposition of motions caused by torques were obtained. For this purpose, I analyze velocity and acceleration fields that are generated in an object with intrinsic angular momentum, and assessed new criteria for coupling velocities. In this context, I will discuss reactions and inertial fields that cannot be explained by classical mechanics. The experiments have been analyzed and explained in a video accompanying this text. I am not aware of any concurrent study on the subject and conclusions evidenced in this paper, preventing us from making additional theoretical com- parisons or indicate to the reader other sources to compare criteria.

Cite this paper
nullG. Barceló, "Analysis of Dynamics Fields in Noninertial Systems," World Journal of Mechanics, Vol. 2 No. 3, 2012, pp. 175-180. doi: 10.4236/wjm.2012.23021.
References
[1]   P. Appell, “Traité de Mécanique Rationnelle,” Gauthier-Villars, Paris, 1909

[2]   I. Newton, “Principia,” Im. Du Chasteller, Paris, Proposition 2, 1757.

[3]   G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 98.

[4]   M. E. Jouffret, “Théorie élémentaire des Phénomènes que Présentent le Gyroscope, la Toupie et le Projectile Oblong,” Berger-Levrault, Extract Revue d′Artillerie, París, 1874.

[5]   P. Gilbert, “Problème de la Rotation d’un Corps Solide Autour d’un Point,” Annales de la Société Scientifique de Bruxelles, 1876, p. 316.

[6]   G. Barceló, “Un Mundo en Rotación,” Marcombo, Barcelona, 2008, p. 208.

[7]   G. Bruhat, “Mécanique,” Masson & Cie, Paris, 1955.

[8]   A. P. French, “Newtonian Mechanics (The M.I.T. Intro- ductory Physics Series),” W. W. Norton & Company, New York, 1971.

[9]   L. D. Landau and E. M. Lifshitz, “Mechanic: Volume 1 (Course of Theoretical Physics),” 3rd Edition, Butterworth-Heinemann, Oxford, 1976,

[10]   L. D. Landau and E. M. Lifshitz, “Mecánica,” Ed. S.A. Reverté, 1994, p. 24.

[11]   E. Mach, “Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargestellt,” Leipzig, Brockhaus, 1921.

[12]   H. Goldstein, “Classical Mechanics,” Addison Wesley, Reading, 1994.

[13]   L. Poinsot, “Théorie Nouvelle de la Rotation des Corps,” 1834.

[14]   Gilbert, “Problème de la Rotation d’un Corps Solide Au- tor d’un Point Solide,” Annales de la Société Scientifique de Bruxelles, 1878, p. 258.

[15]   G. Barceló, “El Vuelo del Bumerán,” Marcombo, Barcelona, 2006, p. 121.

[16]   G. Barceló, “On the Equivalence Principle,” The 61st International Astronautical Congress, American Institute of Aeronautics and Astronautics, Prague, 27 September-1 October 2010.

 
 
Top