A Comparison of Two Test Statistics for Poisson Overdispersion/Underdispersion

Show more

References

[1] L. D. Brown and L. H. Zhao, “A Test for the Poisson Distribution,” Sankhyā, Vol. 64, pp. 611-625

[2] D. Lambert, “Zero-In?ated Poisson Regression Models with an Application to Defects in Manufacturing,” Technometrics, Vol. 34, No. 1, 1992, pp. 1-14.
doi:10.2307/1269547

[3] R. A. Fisher, “The Negative Binomial Distribution,” Annals of Human Genetics Vol. 11, No. 1, 1941, pp. 182187. doi:10.1111/j.1469-1809.1941.tb02284.x

[4] G. J. S. Ross and D. A. Preece, “The Negative Binomial Distribution,” The Statistician, Vol. 34, No. 3, 1985, pp. 323-336. doi:10.2307/2987659

[5] S. M. DeSantis and D. Bandyopadhyay, “Hidden Markov Models for Zero-In?ated Poisson Counts with an Application to Substance Use,” Statistics in Medicine, Vol. 30, 2011, pp. 1678-1694. doi:10.1002/sim.4207

[6] A. El-Shaarawi, “Some Goodness-of-Fit Methods for the Poisson Plus Added Zeros Distribution,” Applied and Environmental Microbiology, Vol. 49, 1985, pp. 1304-1306.

[7] Y. Xia, D. Morrison-Beedy, J. Ma, C. Feng, W. Cross and X. M. Tu, “Modeling Count Outcomes from HIV Risk Reduction Interventions: A Comparison of Competing Statistical Models for Count Responses,” AIDS Research and Treatment, Vol. 2012, 2012, Article ID 593569.
doi:10.1155/2012/593569

[8] T. Loeys, B. Moerkerke, O. De Smet, et al., “The Analysis of Zero-In?ated Count Data: Beyond Zero-In?ated Poisson Regression,” British Journal of Mathematical and Statistical Psychology, Vol. 65, No. 1, 2012, pp. 163-180. doi:10.1111/j.2044-8317.2011.02031.x

[9] A. Khan and M. Western, “Does Attitude Matter in Computer Use in Australian General Practice? A Zero-In?ated Poisson Regression Analysis,” Health Information Management Journal, Vol. 40, 2011, pp. 23-29.

[10] B. T. Pahel, J. S. Preisser, S. C. Stearns, et al., “Multiple Imputation of Dental Caries Data Using a Zero-In?ated Poisson Regression Model,” Journal of Public Health Dentistry, Vol. 71, No. 1, 2011, pp. 71-78.
doi:10.1111/j.1752-7325.2010.00197.x

[11] S. R. Hu, C. S. Li and C. K. Lee, “Assessing Casualty Risk of Railroad-Grade Crossing Crashes Using ZeroIn?ated Poisson Models,” Journal of Transportation Engineering-ASCE, Vol. 137, No. 8, 2011, pp. 527-536.
doi:10.1061/(ASCE)TE.1943-5436.0000243

[12] D. B?hning, “A Note on a Test for Poisson Overdispersion,” Biometrika, Vol. 81, No. 2, 1994, pp. 418-419.
doi:10.1093/biomet/81.2.418

[13] W. Cochran, “Some Methods of Strengthening χ2 Tests,” Biometrics, Vol. 10, No. 4, 1954, pp. 417-451.
doi:10.2307/3001616

[14] C. Feng, H. Wang and X. M. Tu, “The Asymptotic Distribution of a Likelihood Ratio Test for the Poisson Distribution,” Sankhyā, 2012 (in press)

[15] C. S. Li, “A Lack-of-?t Test for Parametric Zero-In?ated Poisson Models,” Journal of Statistical Computation and Simulation, Vol. 81, No. 9, 2011, pp. 1081-1098.
doi:10.1080/00949651003677410

[16] C. S. Li, “Testing the Lack-of-Fit of Zero-In?ated Poisson Regression Models,” Communication in StatisticsSimulation and Computation, Vol. 40, No. 4, 2011, pp. 497-510. doi:10.1080/03610918.2010.546541

[17] C. Rao and I. Chakravarti, “Some Small Sample Tests of Signi?cance for a Poisson Distribution,” Biometrics, Vol. 12, No. 3, 1956, pp. 264-282. doi:10.2307/3001466

[18] J. Van den Broeck, “A Score Test for Zero In?ation in a Poisson Distribution,” Biometrics, Vol. 51, 1995, pp. 738-743.

[19] O. Thas and J. C. W. Rayner, “Smooth Tests for the ZeroIn?ated Poisson Distribution,” Biometrics, Vol. 61, 2005, pp. 808-815. doi:10.1111/j.1541-0420.2005.00351.x