Evolution of Hydrodynamic Instability on Planar Jelly Interface Driven by Explosion

Show more

References

[1] R. D. Richtmyer, “Taylor Instability in Shock Acceleration of Compressible Fluids,” Communications on Pure and Applied Mathematics, Vol. 13, No. 2, 1960, pp. 297- 319. doi:10.1002/cpa.3160130207

[2] E. E. Meshkov, “Instability of the Interface of Two Gases Accelerated by a Shock Wave,” Soviet Fluid Dynamics, Vol. 4, No. 5, 1969, pp. 101-104.
doi:10.1007/BF01015969

[3] G. I. Taylor, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I,” Proceedings of the Royal Society A, Vol. 201, No. 1065, 1950, pp. 192-196. doi:10.1098/rspa.1950.0052

[4] D. H. Sharp, “An Overview of Rayleigh-Taylor Instability,” Physica D, Vol. 12, No. 1-3, 1984, pp. 3-18.
doi:10.1016/0167-2789(84)90510-4

[5] S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” Oxford Univer-sity Press, London, 1961.

[6] G. Dimonte and M. B. Schneider, “Turbulent Rayleigh- Taylor Instability Experiments with Variable Acceleration,” Physical Review E, Vol. 54, No. 4. 1996, pp. 3740-3743. doi:10.1103/PhysRevE.54.3740

[7] Y. A. Kucherenko1, A. P. Pylaev, V. D. Murzakov, et al., “Expe-rimental Study into the Asymptotic Stage of the Separtion of the Turbulized Mixtures in Gravitationally Stable Mode,” In: R. Young, J. Glimm and B. Boston, Eds., Proceeings of the 5th International Workshop on Compressible Turbulent Mixing, Stony Brook University Press, New York, 1996.

[8] J. W. Jacobs and J. M. Sheeley, “Experimental Study of Incompress-ible Richtmyer-Meshkov Instability,” Physics of Fluids, Vol. 8, No. 2, 1996, pp. 405-415.
doi:10.1063/1.868794

[9] E. E. Meshkov, N. V. Nevmerz-hitsky, V. A. Pavlovskii, et al., “Jelly Technique Applications in Evolution Study of Hydrodynamic Instabilities on Unstable Plane and Cylindrical Surfaces,” In: R. Young, J. Glimm and B. Boston, Eds., Prceedings of the 5th International Workshop on Compressible Turbulent Mixing, Stony Brook University Press, New York, 1996.

[10] L. Houas, G. Jourdan, L. Schwaederlé, et al., “A New Large Cross-Section Shock Tube for Studies of Turbulent Mixing Induced by Interfacial Hydrodynamic Instability,” Shock Waves, Vol. 13, No. 5, 2003, pp. 431-434.
doi:10.1007/s00193-002-0173-y

[11] S. H. R. Hosseini and K. Takayama, “Experimental Study of Richtmyer-Meshkov Insta-bility Induced by Cylindrical Shock Waves,” Physics of Fluids, Vol. 17, No. 8, 2005, p. 084101. doi:10.1063/1.1964916

[12] P. M. Rightley, P. Vorobieff, R. Martin, et al., “Experi- mental Observations of the Mixing Transition in a Shock- Accelerated Gas Curtain,” Physics of Fluids, Vol. 11, No. 1, 1999, pp. 186-200. doi:10.1063/1.869911

[13] B. J. Balakumar, G. C. Orlicz, C. D. Tomkins, et al., “Si- multaneous Particle-Image Velocimetry-Planar Laser-In- duced Fluorescence Measurements of Richtmyer-Meshkov instability Growth in a Gas Curtain with and without Re- shock,” Physics of Fluids, Vol. 20, No. 12, 2008, p. 124103.
doi:10.1063/1.3041705

[14] J. W. Jacobs, “The Dynamics of Shock Accelerated Light and Heavy Gas Cylinders,” Physics of Fluids, Vol. 5, No. 9, 1993, pp. 2239-2247. doi:10.1063/1.858562

[15] C. D. Tomkins, K. P. Prestridge, P. M. Rightley, et al., “A Quantitative Study of the Interaction of Two Richtmyer- Meshkov Unstable Gas Cylinders,” Physics of Fluids, Vol. 15, No. 4, 2003, pp. 986-1004. doi:10.1063/1.1555802

[16] S. Kumar, P. Vorobieff, G. Orlicz, et al., “Complex Flow Morphologies in shock-Accelerated Ga-seous Flows,” Phy- sica D, Vol. 235, No. 1-2, 2007, pp. 21-28.
doi:10.1016/j.physd.2007.04.023

[17] S. Gupta, S. Zhang and N. J. Zabusky, “Shock Interaction with a Heavy Gas Cylinder: Emergence of Vortex Bilay- ers and Vortex- Accelerated Ba-roclinic Circulation Gen- eration,” Laser and Particle Beams, Vol. 24, No. 3, 2003, pp. 443-448.

[18] S. Zhang, N. J. Za-busky, G. Z. Peng, et al., “Shock gases Cylinder Interactions: Dynamically Validated Initial Con- ditions Provide Excellent Agreement between Experiments and Numerical Simulations to Late-Intermediate Time,” Physics of Fluids, Vol. 16, No. 5, 2004, pp. 1203-1216.
doi:10.1063/1.1651483

[19] S. Andronov and E. E. Meshkov, “Computational and Ex- perimental Studies of Hydro-Dynamic Instabilities and Turbulent Mixing,” Los Alamos National La-boratory, Los Alamos, 1995.

[20] B. Goodwin an S. Weir, “Rayleigh-Taylor Instability Ex- periments in a Cylindrically Convergent Geometry,” Los Alamos National Laboratory, Los Alamos, 1996.

[21] K. O. Mikaelian, “Rayleigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Spherical Shells,” Physical Review A, Vol. 42, No. 6, 1990, pp. 3400-3420.
doi:10.1103/PhysRevA.42.3400

[22] K. O. Mikaelian, “Ray-leigh-Taylor and Richtmyer-Meshkov Instabilities and Mixing in Stratified Cylindrical Shells,” Physics of Fluids, Vol. 17, No. 9, 2005, pp. 094105.
doi:10.1063/1.2046712

[23] N. C. Hearn, T. Plewa, R. P. Drake, et al., “Flash Code Simulation of Rayleigh-Taylor and Richtmyer-Meshkov Instabilitites in Laser-Driven Experiments,” Astrophysics and Space Science, Vol. 307, No. 1-3, 2007, pp. 227-231.
doi:10.1007/s10509-006-9226-5

[24] H. Lee, H. Jin, Y. Yu, et al., “On Validation of Turbulent Mixing Simulations for Ray-leigh-Taylor Instability,” Phy- sics of Fluids, Vol. 20, No. 1, 2008, p. 012102.
doi:10.1063/1.2832775

[25] A. Marocchino, S. Atzeni and A. Schiavi, “Numerical Stu- dy of the Ablative Richtmyer-Meshkov Instability of La- ser-Irradiated Deuterium and Deuterium-Tritium Targets,” Physics of Plasmas, Vol. 17, No. 11, 2010, p. 112703.
doi:10.1063/1.3505112

[26] L. Biferale, F. Mantovani and M. Sbragaglia, “High Re- solution Numerical Study of Ray-leigh-Taylor Turbulence Using a Thermal Lattice Boltzmann Scheme,” Physics of Fluids, Vol. 22, No. 11, 2010, p. 115112.
doi:10.1063/1.3517295

[27] L. F. Wang, W. H. Ye, W. S. Don, et al., “Formation of Large-Scale Structures in Ablative Kel-vin-Helmholtz In- stability,” Physics of Plasmas, Vol. 17, No. 12, 2010, p. 122308. doi:10.1063/1.3524550

[28] M. A. Ullah, W. B. Gao and D. K. Mao, “Numerical Simu- lations of Rich-tmyer-Meshkov Instabilities Using Conser- vative Front-Tracking Method,” Applied Mathematics and Mechanics, Vol. 32, No. 1, 2011, pp. 119-132.
doi:10.1007/s10483-011-1399-x

[29] T. Wang, J. S. Bai, P. Li, et al., “The Numerical Study of Shock-Induced Hydrodynamic Instability and Mixing,” Chinese Physics B, Vol. 18, No. 3, 2009, pp. 1127-1135.
doi:10.1088/1674-1056/18/3/048