Back
 FNS  Vol.3 No.6 , June 2012
Effect of Pulsed Ultraviolet Light on the Total Phenol Content of Elderberry (Sambucus nigra) Fruit
Abstract: The changes in total polyphenolics in elderberry (Sambucus nigra) following treatment with various doses of pulsed ultraviolet rays (UV) were investigated. Four pulsed UV durations (5, 10, 20, 30 seconds) at three energy dosages (4500, 6000, 11,000 J/m2/pulse) were considered for the research. All treated elderberry fruits were incubated for 24 h at room temperature (25℃) following treatment to ensure enough response duration for enhanced development of polyphenols by the berries. The highest increase in total phenolics around 50% was found with 11,000 J/m2/pulse for a 10 seconds treatment while nearly 40% increase in total phenolics was found at an energy dosage of 11,000 J/m2/pulse after 5 seconds exposure. Even though most of the treatments indicated an increase in total polyphenols, some treatment expressed a decrease in phenolics content when compared to untreated fruits.
Cite this paper: R. Murugesan, V. Orsat and M. Lefsrud, "Effect of Pulsed Ultraviolet Light on the Total Phenol Content of Elderberry (Sambucus nigra) Fruit," Food and Nutrition Sciences, Vol. 3 No. 6, 2012, pp. 774-783. doi: 10.4236/fns.2012.36104.
References

[1]   B. D. McKersie and Y. Y. Leshem, “Stress and Stress Coping in Cultivated Plants,” Kluwer Academic Publishers, London, 1994, p. 256.

[2]   V. Shulaev, D. Cortes, G. Miller and R. Mittler, “Metabolomics for Plant Stress Response,” Physiologia Plantarum, Vol. 132, No. 2, 2008, pp. 199-208. doi:10.1111/j.1399-3054.2007.01025.x

[3]   M. Ron, “Abiotic Stress, the Field Environment and Stress Combination,” Trends in Plant Science, Vol. 11, No. 1, 2006, pp. 15-19. doi:10.1016/j.tplants.2005.11.002

[4]   N. Suzuki and R. Mittler, “Reactive Oxygen Species and Temperature Stresses: A Delicate Balance between Signaling and Destruction,” Physiologia Plantarum, Vol. 126, No. 1, 2006, pp. 45-51. doi:10.1111/j.0031-9317.2005.00582.x

[5]   R. Mittler, S. Vanderauwera, M. Gollery and F. Van Breusegem, “Reactive Oxygen Gene Network of Plants,” Trends in Plant Science, Vol. 9, No. 10, 2004, pp. 490-498. doi:10.1016/j.tplants.2004.08.009

[6]   M. Ron, “Oxidative Stress, Antioxidants and Stress Tolerance,” Trends in Plant Science, Vol. 7, No. 2, 2002, pp. 405-410.

[7]   M. D. Anderson, T. K. Prasad, B. A. Martin and C. R. Stewart, “Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance,” Plant Physiology, Vol. 105, 1994, pp. 331-339.

[8]   T. K. Prasad, M. D. Anderson and C. R. Stewart, “Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings,” Plant Physiology, Vol. 105, No. 2, 1994, pp. 619-627.

[9]   T. K. Prasad, M. D. Anderson, B. A. Martin and C. R. Stewart, “Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide,” The Plant Cell Online, Vol. 6, No. 1, 1994, pp. 65-74. doi:10.1105/tpc.6.1.65

[10]   A. K. Bharti and J. P. Khurana, “Mutants of Arabidopsis as Tools to Understand the Regulation of Phenylpropanoid Pathway and UVB Protection Mechanisms,” Photochemistry and Photobiology, Vol. 65, No. 5, 1997, pp. 765-776. doi:10.1111/j.1751-1097.1997.tb01923.x

[11]   P. J. Christie, M. R. Alfenito and V. Walbot, “Impact of Low-Temperature Stress on General Phenylpropanoid and Anthocyanin Pathways: Enhancement of Transcript Abundance and Anthocyanin Pigmentation in Maize Seedlings,” Planta, Vol. 194, No. 4, 1994, pp. 541-549. doi:10.1007/BF00714468

[12]   R. A. Dixon and N. L. Paiva, “Stress-Induced Phenylpropanoid Metabolism,” The Plant Cell, Vol. 7, No. 7, 1995, pp. 1085-1097.

[13]   C. Nozzolillo, P. Isabelle and G. Das, “Seasonal Changes in the Phenolic Constituents of Jack Pine Seedlings (Pinus banksiana) in Relation to the Purpling Phenomenon,” Canadian Journal of Botany, Vol. 68, 1990, pp. 2010-2017.

[14]   H. Wang, G. Cao and R. L. Prior, “Oxygen Radical Absorbing Capacity of Anthocyanins,” Journal of Agricultural and Food Chemistry, Vol. 45, No. 2, 1997, pp. 304-309. doi:10.1021/jf960421t

[15]   Y. Z. Fang, S. Yang and G. Wu, “Free Radicals, Antioxidants, and Nutrition,” Nutrition, Vol. 18, No. 10, 2002, pp. 872-879. doi:10.1016/S0899-9007(02)00916-4

[16]   A. L. Dawidowicz, D. Wianowska and B. Baraniak, “The Antioxidant Properties of Alcoholic Extracts from Sambucus nigra L. (Antioxidant Properties of Extracts),” Food Science and Technology, Vol. 39, No. 3, 2006, pp. 308-315.

[17]   L. Machlin and A. Bendich, “Free Radical Tissue Damage: Protective Role of Antioxidant Nutrients,” FASEB Journal, Vol. 1, No. 6, 1987, pp. 441-445.

[18]   B. Halliwell, “Free Radicals and Antioxidants: A Personal View,” Nutrition Reviews, Vol. 52, No. 8, 1994, pp. 253-265. doi:10.1111/j.1753-4887.1994.tb01453.x

[19]   D. Harman, “The Aging Process,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 78, No. 11,1981, pp. 7124-7128. doi:10.1073/pnas.78.11.7124

[20]   J. Beattie, A. Crozier and G. G. Duthie, “Potential Health Benefits of Berries,” Current Nutrition and Food Science, Vol. 1, No. 1, 2005, pp. 71-86. doi:10.2174/1573401052953294

[21]   M. C. Nicoli, M. Anese and M. Parpinel, “Influence of Processing on the Antioxidant Properties of Fruit and Vegetables,” Trends in Food Science & Technology, Vol. 10, No. 3, 1999, pp. 94-100. doi:10.1016/S0924-2244(99)00023-0

[22]   E. A. Decker, “The Role of Phenolics, Conjugated Linoleic Acid, Carnosine, and Pyrroloquinoline Quinone as Nonessential Dietary Antioxidants,” Nutrition Reviews, Vol. 53, No. 3, 1995, pp. 49-58. doi:10.1111/j.1753-4887.1995.tb01502.x

[23]   C. Manach, A. Scalbert, C. Morand, C. Remesy and L. Jimenez, “Polyphenols: Food Sources and Bioavailability,” American Journal of Clinical Nutrition, Vol. 79, No. 5, 2004, pp. 727-747.

[24]   A. Scalbert and G. Williamson, “Dietary Intake and Bioavailability of Polyphenols,” Journal of Nutrition, Vol. 130, No. 8, 2000, pp. 2073-2085.

[25]   K. A. Steinmetz and J. D. Potter, “Vegetables, Fruit, and Cancer Prevention: A Review,” Journal of the American Dietetic Association, Vol. 96, No. 10, 1996, pp. 10271039. doi:10.1016/S0002-8223(96)00273-8

[26]   L. B. M. Tijburg, T. Mattern, J. D Folts, U. M. Weisgerber and M. B. Katan, “Tea Flavonoids and Cardiovascular Diseases: A Review,” Critical Reviews in Food Science and Nutrition, Vol. 37, No. 8, 1997, pp. 771-785. doi:10.1080/10408399709527802

[27]   G. Cao and R. L. Prior, “Anthocyanins Are Detected in Human Plasma after Oral Administration of an Elderberry Extract,” Clinical Chemistry, Vol. 45, No. 4, 1999, pp. 574-576.

[28]   P. E. Milbury, G. Cao, R. L. Prior and J. Blumberg, “Bioavailablility of Elderberry Anthocyanins,” Mechanisms of Ageing and Development, Vol. 123, No. 8, 2002, pp. 997-1006. doi:10.1016/S0047-6374(01)00383-9

[29]   M. Netzel, G. Strass, M. Herbst, H. Dietrich, R. Bitsch, I. Bitsch and T. Frank, “The Excretion and Biological Antioxidant Activity of Elderberry Antioxidants in Healthy Humans,” Food Research International, Vol. 38, No. 8-9, 2005, pp. 905-910. doi:10.1016/j.foodres.2005.03.010

[30]   R. Veberic, J. Jakopic, F. Stampar and V. Schmitzer, “European Elderberry (Sambucus nigra L.) Rich in Sugars, Organic Acids, Anthocyanins and Selected Polyphenols,” Food Chemistry, Vol. 114, No. 2, 2009, pp. 511-515. doi:10.1016/j.foodchem.2008.09.080

[31]   J. J. Vuli?, L. O. Vra?ar and Z. M. ?umi?, “Chemical Characteristics of Cultivated Elderberry Fruit,” Acta Periodica Technologica, Vol. 39, 2008, pp. 85-90.

[32]   J. P. Goiffon, P. P. Mouly and E. M. Gaydou, “Anthocyanic Pigment Determination in Red Fruit Juices, Concentrated Juices and Syrups Using Liquid Chromatography,” Analytica Chimica Acta, Vol. 382, No. 1-2, 1999, pp. 39-50. doi:10.1016/S0003-2670(98)00756-9

[33]   J. Lee and C. E. Finn, “Anthocyanins and Other Polyphenolics in American Elderberry (Sambucus canadensis) and European Elderberry (Sambucus nigra) Cultivars,” Journal of the Science of Food and Agriculture, Vol. 87, No. 14, 2007, pp. 2665-2675. doi:10.1002/jsfa.3029

[34]   R. Puupponen-Pimi?, L. Nohynek, H. L. Alakomi and K. M. Oksman-Caldentey, “Bioactive Berry Compounds—Novel Tools against Human Pathogens,” Applied Microbiology and Biotechnology, Vol. 67, No. 1, 2005, pp. 8-18. doi:10.1007/s00253-004-1817-x

[35]   O. Arakawa, “Effect of Ultraviolet Light on Anthocyanin Synthesis in Light Colored Sweet Cherry,” Japanese Society for Horticultural Science, Vol. 62, No. 3, 1993, pp. 543-546. doi:10.2503/jjshs.62.543

[36]   M. Baka, “Photochemical Treatment to Improve Storability of Fresh Strawberries,” Journal of Food Science, Vol. 64, No. 6, 1999, pp. 1068-1072. doi:10.1111/j.1365-2621.1999.tb12284.x

[37]   E. Cantos, J. C. Espin and F. A. Tomas-Barberan, “Postharvest Induction Modeling Method Using UV Irradiation Pulses for Obtaining Resveratrol-Enriched Table Grapes. A New Functional Fruit?” Journal of Agricultural and Food Chemistry, Vol. 49, No. 10, 2001, pp. 5052-5058. doi:10.1021/jf010366a

[38]   E. Cantos, J. C. Espin, M. J. Fernandez, J. Oliva and F. A. Tomas-Barberan, “Postharvest UV-C Irradiated Grapes as a Potential Source for Producing Stilbene-Enriched Red Wines,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 5, 2003, pp. 1208-1214. doi:10.1021/jf020939z

[39]   J. A. Guerrero-Beltran and G. V. Barbosa-Canovas, “Advantages and Limitations on Processing Foods by UV Light,” Food Science and Technology International, Vol. 10, No. 3, 2004, pp. 37-147.

[40]   K. L. Bialka and A. Demirci, “Efficacy of Pulsed UV-Light for the Decontamination of Escherichia coli O157:H7 and Salmonella spp. on Raspberries and Strawberries,” Journal of Food Science, Vol. 73, No. 5, 2008, pp. M201-M207. doi:10.1111/j.1750-3841.2008.00743.x

[41]   S. L. Hillegas and A. Demirci, “Inactivation of Clostridium Sporogenes in Clover Honey by Pulsed UV-Light Treatment,” E-Journal—CIGR, 2003.

[42]   S. Jun, J. Irudayaraj, A. Demirci and D. Geiser, “Pulsed UV-Light Treatment of Corn Meal for Inactivation of Aspergillus Niger Spores,” International Journal of Food Science & Technology, Vol. 38, No. 8, 2003, pp. 883-888. doi:10.1046/j.0950-5423.2003.00752.x

[43]   K. Krishnamurthy, A. Demirci and J. Irudayaraj, “Inactivation of Staphylococcus aureus in Milk and Milk Foam by Pulsed UV-Light Treatment and Surface Response Modeling,” Transactions of the ASABE, Vol. 51, No. 6, 2008, pp. 2083-2090.

[44]   F. Fine and P. Gervais, “Efficiency of Pulsed UV Light for Microbial Decontamination of Food Powders,” Journal of Food Protection, Vol. 67, No. 4, 2004, pp. 787792.

[45]   K. F. McDonald, R. D. Curry, T. E. Clevenger, K. Unklesbay, A. Eisenstark, J. Golden and R. D. A. Morgan, “Comparison of Pulsed and Continuous Ultraviolet Light Sources for the Decontamination of Surfaces,” IEEE Transactions on Plasma Science, Vol. 28, No. 5, 2000, pp. 1581-1587. doi:10.1109/27.901237

[46]   J. T. O. Dunn and W. Clark, “Pulsed Light Treatment of Food and Packaging,” Food Technology, Vol. 49, No. 9, 1995, pp. 95-98.

[47]   L. Palmieri and D. Cacace, “High Intensity Pulsed Light Technology. Emerging Technologies for Food Processing,” Elsevier Academic Press, London, 2005.

[48]   M. D. Kalaras and R. B. Beelman, “Vitamin D2 Enrichment in Fresh Mushrooms Using Pulsed UV Light Department of Food Science,” Penn State University, University Park, 2010. http://foodscience.psu.edu/directory/rbb6/VitaminDEnrichment.pdf

[49]   S. Ben-Yehoshua, V. Rodov, J. J. Kim and S. Carmeli, “Preformed and Induced Antifungal Materials of Citrus Fruits in Relation to the enhancement of Decay Resistance by Heat and Ultraviolet Treatments,” Journal of Agricultural and Food Chemistry, Vol. 40, No. 7, 1992, pp. 1217-1221. doi:10.1021/jf00019a029

[50]   D. Marquenie, C. W. Michiels, A. H. Geeraerd, A. Schenk, C. Soontjens, J. F. Van Impe and B. M. Nicola?, “Using Survival Analysis to Investigate the Effect of UV-C and Heat Treatment on Storage Rot of Strawberry and Sweet Cherry,” International Journal of Food Microbiology, Vol. 73, No. 2-3, 2002, pp.187-196. doi:10.1016/S0168-1605(01)00648-1

[51]   D. Marquenie, J. Lammertyn, A. H. Geeraerd, C. Soontjens, J. F. Van Impe, B. M. Nicola? and C. W. Michiels, “Inactivation of Conidia of Botrytis Cinerea and Monilinia Fructigena Using UV-C and Heat Treatment,” International Journal of Food Microbiology, Vol. 74, No. 1-2, 2002, pp. 27-35.

[52]   J. Pan, A. R. Vicente, G. A. Martínez, A. R. Chaves and P. M. Civello, “Combined Use of UV-C Irradiation and Heat Treatment to Improve Postharvest Life of Strawberry Fruit,” Journal of the Science of Food and Agriculture, Vol. 84, No. 14, 2004, pp. 1831-1838. doi:10.1002/jsfa.1894

[53]   M. Adrian, P. Jeandet, A. C. Douillet-Breuil, L. Tesson and R. Bessis, “Stilbene Content of Mature Vitis vinifera Berries in Response to UV-C Elicitation,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 12, 2000, pp. 6103-6105. doi:10.1021/jf0009910

[54]   E. Cantos, J. C. Espin and F. A. Tomas-Barberan, “Postharvest Stilbene-Enrichment of Red and White Table Grape Varieties Using UV-C Irradiation Pulses,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 22, 2002, pp. 6322-6329. doi:10.1021/jf020562x

[55]   S. D. Flint, P. W. Jordan and M. M. Caldwell, “Plant Protective Response to Enhanced UV-B Radiation under Field Conditions. Leaf Optical Properties and Photosynthesis,” Photochemistry and Photobiology, Vol. 41, No. 1, 1985, pp. 95-99. doi:10.1111/j.1751-1097.1985.tb03454.x

[56]   A. Lavola, “Accumulation of Flavonoids and Related Compounds in Birch Induced by UV-B Irradiance,” Tree Physiology, Vol. 18, No. 1, 1998, pp. 53-58. doi:10.1093/treephys/18.1.53

[57]   M. Baka, J. Mercier, R. Corcuff, F. Castaigne and J. Arul, “Photochemical Treatment to Improve Storability of Fresh Strawberries,” Journal of Food Science, Vol. 64, No. 6, 1999, pp. 1068-1072. doi:10.1111/j.1365-2621.1999.tb12284.x

[58]   Y. H. Dong, D. Mitra, A. Kootstra, C. Lister and J. Lancaster, “Postharvest Stimulation of Skin Color in Royal Gala Apple,” Journal of the American Society for Horticultural Science, Vol. 120, No. 1, 1995, pp. 95-100.

[59]   A. Kacperska, “Water Potential AlterationA Prerequisite or a Triggering Stimulus for the Development of Freezing Tolerance in Overwintering Herbaceous Plants?” In: P. H. Li and L. Christerson, Eds., Advances in Plant Cold Hardiness, CRC Press, Boca Raton, 1993, pp. 73-91.

[60]   R. A. Dixon, A. D. Choudhary, D. Dalkin, R. Edwards, T. Fahrendorf, G. Gowri, M. J. Harrison, C. J. Lamb, G. J. Loake, C. A. Maxwell, J. Orr and N. L. Paiva, “Molecular Biology of Stress-Induced Phenylpropanoid and Isoflavonoid Biosynthesis in Alfalfa,” In: H. A. Stafford and R. K. Ibrahim, Eds., Phenolic Metabolism in Plants, Plenum press, New York, 1992, pp. 91-138. doi:10.1007/978-1-4615-3430-3_4

[61]   A. Levine, R. Tenhaken, R. Dixon and C. Lamb, “H2O2 from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response,” Cell, Vol. 79, 1994, pp. 583-593. doi:10.1016/0092-8674(94)90544-4

[62]   A. Leyva, J. A Jarillo, J. Salinas and J. M. Martinez-Zapater, “Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis Thaliana in a Light-Dependent Manner,” Plant Physiology, Vol. 108, No. 1, 1995, pp. 39-46.

 
 
Top