[1] R. Ozay, et al., “Citicoline Improves Functional Recovery, Promotes Nerve Regeneration, and Reduces Postoperative Scarring after Peripheral Nerve Surgery in Rats,” Surgical Neurology, Vol. 68, No. 6, 2007, pp. 615-622. doi:10.1016/j.surneu.2006.12.054
[2] V. Parisi, et al., “Evidence of the Neuroprotective Role of Citicoline in Glaucoma Patients,” Progress in Brain Research, 173, 2008, pp. 541-554.
[3] J. J. Secades and J. L. Lorenzo, “Citicoline: Pharmacological and Clinical Review, 2006 Update,” Methods & Findings in Experimental & Clinical Pharmacology, 28 Suppl B, 2006, pp. 1-56.
[4] R. Conant and A. G. Schauss, “Therapeutic Applications of Citicoline for Stroke and Cognitive Dysfunction in the Elderly: A Review of the Literature,” Alternative Medicine Review, 9, No.1, 2004, pp. 17-31.
[5] I. H. Ulus, et al., “Choline Increases Acetylcholine Release and Protects against the Stimulation-Induced Decrease in Phosphatide Levels within Membranes of Rat Corpus Striatum,” Brain Research, 1 484, No. 1-2, 989, pp. 217-227.
[6] R. J. Wurtman, et al., “Effect of Oral CDP-Choline on Plasma Choline and Uridine Levels in Humans,” Biochemical Pharmacology, 60, No. 7, 2000, pp. 989-992. doi:10.1016/S0006-2952(00)00436-6
[7] S. M. Babb, et al., “Differential Effect of CDP-Choline on Brain Cytosolic Choline Levels in Younger and Older Subjects as Measured by Proton Magnetic Resonance Spectroscopy,” Psychopharmacology, 127, No. 2, 1996, pp. 88-94. doi:10.1007/BF02805979
[8] S. M. Babb, et al., “Chronic Citicoline Increases Phosphodiesters in the Brains of Healthy Older Subjects: An in Vivo Phosphorus Magnetic Resonance Spectroscopy Study,” Psychopharmacology, 161, No. 3, 2002, pp. 248-254. doi:10.1007/s00213-002-1045-y
[9] M. M. Silveri, et al., “Citicoline Enhances Frontal Lobe Bioenergetics as Measured by Phosphorus Magnetic Resonance Spectroscopy,” NMR in Biomedicine, 21, No. 10, 2008, pp. 1066-1075. doi:10.1002/nbm.1281
[10] J. Agut, J. Ortiz and R. Wurtman, “Cytidine (5')Diphosphocholine Modulates Dopamine K(+)-Evoked Release in Striatum Measured by Microdialysis,” Annals of the New York Academy of Sciences, 920, 2000, pp. 332335. doi:10.1111/j.1749-6632.2000.tb06944.x
[11] A. Davalos and J. Secades, “Citicoline Preclinical and Clinical Update 2009-2010,” Stroke, 42, No. 1, 2011, pp. S36-S39. doi:10.1161/STROKEAHA.110.605568
[12] A. Agnoli, G. Bruno and M. Fioravanti, “Therapeutic Approach to Senile Memory Impairment: A Double-Blind Clinical Trial with CDP Choline,” Alzheimer’s Disease: Proceedings of the 5th Meeting of the International Study Group on the Pharmacology of Memory Disorders Associated with Aging, Birkhauser, Boston, 1989.
[13] G. Hochanadel and E. Kaplan, “Neuropsychology of Normal Aging, in Clinical Neurology of Aging,” In: M. Albert, Ed., Oxford University Press, New York, 1984, pp. 231-244.
[14] J. McDowd and J. Birren, “Aging and Attentional Processes, in Handbook of the Psychology of Aging,” In: J. Birren and K. Schaie, Eds., Academic Press, San Diego, 1990, pp. 222-233.
[15] D. J. Madden, et al., “Age-Related Changes in Neural Activity during Visual Target Detection Measured by fMRI,” Cerebral Cortex, 14, 2004, pp. 143-155. doi:10.1093/cercor/bhg113
[16] J. G. Vaidya, et al., “Aging, Grey Matter, and Blood Flow in the Anterior Cingulate Cortex,” Neuroimage, 37, No. 4, 2007, pp. 1346-1353. doi:10.1016/j.neuroimage.2007.06.015
[17] J. V. Pardo, et al., “Where the Brain Grows Old: Decline in Anterior Cingulate and Medial Prefrontal Function with Normal Aging,” Neuroimage, 35, No. 3, 2007, pp. 1231-1237. doi:10.1016/j.neuroimage.2006.12.044
[18] M. W. Willis, et al., “Age, Sex and Laterality Effects on Cerebral Glucose Metabolism in Healthy Adults,” Psychiatry Research Neuroimaging, 114, No. 1, 2002, pp. 23-37. doi:10.1016/S0925-4927(01)00126-3
[19] W. L. Whiting, D. J. Madden and K. J. Babcock, “Overriding Age Differences in Attentional Capture with Top-Down Processing,” Psychology and Aging, 22, No. 2, 2007, pp. 223-232. doi:10.1037/0882-7974.22.2.223
[20] D. H. Spieler, D. A. Balota and M. E. Faust, “Stroop Performance in Healthy Younger and Older Adults and in Individuals with Dementia of Alzheimer’s Type,” Journal of Experimental Psychology: Human Perception and Performance, 22, No. 2, 1996, pp. 461-479. doi:10.1037/0096-1523.22.2.461
[21] C. K. Conners, et al., “Continuous Performance Test Performance in a Normative Epidemiological Sample,” Journal of Abnormal Child Psychology, 31, No. 5, 2003, pp. 555-562. doi:10.1023/A:1025457300409
[22] J. N. Epstein, et al., “Relations between Continuous Performance Test Performance Measures and ADHD Behaviors,” Journal of Abnormal Child Psychology, 31, No. 5, 2003, pp. 543-554. doi:10.1023/A:1025405216339
[23] C. K. Conners, “The Conners Continuous Performance Test,” Multi-Health Systems, Inc., Toronto, 1994.
[24] N. D. Volkow, et al., “Association between Decline in Brain Dopamine Activity with Age and Cognitive and Motor Impairment in Healthy Individuals,” American Journal of Psychiatry, 155, No. 3, 1998, pp. 344-349.
[25] A. Nieoullon, “Dopamine and the Regulation of Cognition and Attention,” Progress in Neurobiology, 67, No. 1, 2002, pp. 53-83. doi:10.1016/S0301-0082(02)00011-4
[26] J. O. Rinne, et al., “Cognitive Impairment and the Brain Dopaminergic System in Parkinson Disease,” Archives of Neurology, 57, No. 4, 2000, pp. 470-475. doi:10.1001/archneur.57.4.470
[27] R. Rejdak, et al., “Citicoline Treatment Increases Retinal Dopamine Content in Rabbits,” Ophthalmic Research, 34, No. 3, 2002, pp. 146-149. doi:10.1159/000063658
[28] R. Giménez, J. Ra?ch and J. Aguilar, “Changes in Brain Striatum Dopamine and Acetylcholine Receptors Induced by Chronic CDP-Choline Treatment of Aging Mice,” British Journal of Pharmacology, 104, No. 3, 1991, pp. 575-578. doi:10.1080/10623320600934341
[29] K. Radad, et al., “CDP-Choline Reduces Dopaminergic Cell Loss Induced by MPP+ and Glutamate in Primary Mesencephalic Cell Culture,” International Journal of Neuroscience, 117, No. 7, 2007, pp. 985-998.