AM  Vol.3 No.7 , July 2012
A Thermal Shock-Chemical Reactive Problem in Flow of Viscoelastic Fluid with Thermal Relaxation
Effects of thermal and species diffusion with one relaxation time on the boundary layer flow of a viscoelastic fluid bounded by a vertical surface in the presence of transverse magnetic field have been studied. The state space approach developed by Ezzat [1] is adopted for the solution of one-dimensional problem for any set of boundary conditions. The resulting formulation together with the Laplace transform techniques are applied to a thermal shock-chemical reactive problem. The inversion of the Laplace transforms is carried out using a numerical approach. The numerical results of dimensionless temperature, concentration, velocity, and induced magnetic and electric fields distributions are given and illustrated graphically for the problem.

Cite this paper
M. Ezzat and W. Khatan, "A Thermal Shock-Chemical Reactive Problem in Flow of Viscoelastic Fluid with Thermal Relaxation," Applied Mathematics, Vol. 3 No. 7, 2012, pp. 685-698. doi: 10.4236/am.2012.37102.
[1]   M. A. Ezzat, “State Space Approach to Solids and Fluids,” Canadian Journal of Physics Review, Vol. 86, No. 11, 2008, pp. 1242-1250. doi:10.1139/P08-069

[2]   E. Scribben, D. Baird and P. Wapperom, “The Role of Transient Rheology in Poly-Meric Sintering,” Rheologica Acta, Vol. 45, No. 6, 2006, pp. 825-839.

[3]   Z. Wouter, M. Hendriks and M. T. Hart, “A VelocityBased Approach to Visco-Elastic Flow of Rock,” Mathematical Geology, Vol. 37, 2005, pp. 141-162.

[4]   B. O. Anwar and O. D. Makinde, “Viscoelastic Flow and Species Transfer in a Darcian High-Permeability Channel,” Journal of Petroleum Science and Engineering, Vol. 76, No. 3-4, 2011, pp. 93-97. doi:10.1016/j.petrol.2011.01.008

[5]   Y. Xia and A. M. Jacobi, “Air-Side Data Interpretation and Performance Analysis for Heat Exchangers with Simultaneous Heat and Mass Transfer, Wet and Frosted Surfaces,” International Journal of Heat and Mass Transfer, Vol. 48, No. 25-26, 2005, pp. 5089-5102. doi:10.1016/j.ijheatmasstransfer.2005.08.008

[6]   M. A. Ezzat and M. Zakaria, “Heat Transfer with Thermal Relaxation to a Perfectly Conducting Polar Fluid,” Heat and Mass Transfer, Vol. 41, No. 3, 2005, pp. 189-198. doi:10.1007/s00231-004-0511-y

[7]   H. I. Andersson, “MHD Flow of a Viscoelastic Fluid past a Stretching Surface,” Acta Mechanica, Vol. 95, No. 1-4, 1992, pp. 227-230.

[8]   B. C. Sakiadis, “Boundary Layer Behavior on Continuous Solid Surface: Part II. The Boundary Layer on a Continuous Flat Surface,” AIChE Journal, Vol. 7, No. 2, 1961, pp. 221-225.

[9]   M. A. Ezzat and M. Zakaria, “State Space Approach to Viscoelastic Fluid Flow of Hydromagnetic Fluctuating Boundary-Layer through a Porous Medium,” ZAMM, Vol. 77, 1997, pp. 197-207.

[10]   S. K. Khan and E. Sanjayanand, “Viscoelastic Boundary Layer Flow and Heat Transfer over an Exponential Stretching Sheet,” International Journal of Heat and Mass Transfer, Vol. 48, No. 8, 2005, pp. 1534-1542. doi:10.1016/j.ijheatmasstransfer.2004.10.032

[11]   G. Honig and U. Hirdes, “A method for the Numerical Inversion of Laplace Transforms,”Computational and Applied Mathematics, Vol. 10, No. 1, 1984, pp. 113-132.

[12]   M. A. Ezzat, “Free Convection Effects on Perfectly Conducting Fluid,” International Journal of Engineering Science, Vol. 39, No. 7, 2001, pp. 799-819. doi:10.1016/S0020-7225(00)00059-8

[13]   S. Das, A. Satapathy, J. Das and J. Panda, “Mass Transfer Effects on MHD Flow and Heat Transfer Past a Vertical Porous Plate through a Porous Medium Under Oscillatory Suction and Heat Source,” International Journal of Heat and Mass Transfer, Vol. 52, No. 25-26, 2009, pp. 59625969. doi:10.1016/j.ijheatmasstransfer.2009.04.038

[14]   K. L. Hsiao, “Heat and Mass Mixed Convection for MHD Visco-Elastic Fluid Past a Stretching Sheet with Ohmic dissipation,” Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 7, 2010, pp. 1803-1812. doi:10.1016/j.cnsns.2009.07.006

[15]   M. A. Ezzat, M. I. Othman and A. A. Smaan, “State Space Approach to Two-Dimensional Electro-Magneto Thermoelastic Problem with Two Relaxation Times,” International Journal of Engineering Science, Vol. 39, 2001, pp. 1383-1404. doi:10.1016/S0020-7225(00)00095-1.