AM  Vol.3 No.7 , July 2012
Multidimensional Stability of Subsonic Phase Transitions in a Non-Isothermal Van Der Waals Fluid
Author(s) Shuyi Zhang*
ABSTRACT
We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on the existence result of planar waves in our previous work [1], a jump condition is posed on non-isothermal phase boundaries which makes the argument possible. Stability of planar waves both in one dimensional and multidi-mensional spaces are proved.

Cite this paper
S. Zhang, "Multidimensional Stability of Subsonic Phase Transitions in a Non-Isothermal Van Der Waals Fluid," Applied Mathematics, Vol. 3 No. 7, 2012, pp. 673-684. doi: 10.4236/am.2012.37101.
References
[1]   S.-Y. Zhang, “Existence of Travelling Waves in NonIsothermal Phase Dynamics,” Journal of Hyperbolic Differential Equations, Vol. 3, No. 4, 2007, pp. 391-400. doi:10.1142/S0219891607001197

[2]   H. Fan and M. Slemrod, “Dynamic Flows with Liquid/ Vapor Phase Transitions,” In: H. Fan and M. Slemrod, Eds., Handbook of Mathematical Fluid Dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 373-420.

[3]   P. D. Lax, “Hyperbolic Systems of Conservation Laws. II,” Communications on Pure and Applied Mathematics, Vol. 10, 1957, pp. 537-467. doi:10.1002/cpa.3160100406

[4]   M. Slemrod, “Admissibility Criteria for Propagating Phase Boundaries in a Van Der Waals Fluid,” Archive for Rational Mechanics and Analysis, Vol. 81, No. 4, 1983, pp. 301-315.

[5]   M. Shearer, “Nonuniqueness of Admissible Solutions of Riemann Initial Value Problem for a System of Conservation Laws of Mixed Type,” Archive for Rational Mechanics and Analysis, Vol. 93, No. 1, 1986, pp. 45-59. doi:10.1007/BF00250844

[6]   P. G. LeFloch, “Propagating Phase Boundaries: Formulation of the Problem and Existence via the Glimm Method,” Archive for Rational Mechanics and Analysis, Vol. 123, No. 2, 1993, pp. 153-197. doi:10.1007/BF00695275

[7]   S. Benzoni-Gavage, “Stability of Multi-Dimensional Phase Transitions in a Van Der Waals Fluid,” Nonlinear Analysis, Vol. 31, No. 1-2, 1998, pp. 243-263. doi:10.1016/S0362-546X(96)00309-4

[8]   S. Benzoni-Gavage, “Stability of Subsonic Planar Phase Boundaries in a Van Der Waals Fluid,” Archive for Rational Mechanics and Analysis, Vol. 150, No. 1, 1999, pp. 23-55. doi:10.1007/s002050050179

[9]   Y.-G. Wang and Z. Xin, “Stability and Existence of Multidimensional Subsonic Phase Transitions,” Acta Mathematicae Applicatae Sinica. English Series, Vol. 19, No. 4, 2003, pp. 529-558.

[10]   S.-Y. Zhang, “Discontinuous Solutions to the Euler Equations in a Van Der Waals Fluid,” Applied Mathematics Letters, Vol. 20, No. 2, 2007, pp. 170-176. doi:10.1016/j.aml.2006.03.010

[11]   M. Slemrod, “Dynamic Phase Transitions in a Van Der Waals Fluid,” Journal of Differential Equations, Vol. 52, No. 1, 1984, pp. 1-23. doi:10.1016/0022-0396(84)90130-X

[12]   M. Grinfeld, “Nonisothermal Dynamic Phase Transitions,” Quarterly of Applied Mathematics, Vol. 47, No. 1, 1989, pp. 71-84.

[13]   H. Hattori, “The Riemann Problem for a Van Der Waals fluid with Entropy Rate Admissibility Criterion Nonisothermal Case,” Journal of Differential Equations, Vol. 65, No. 2, 1986, pp. 158-174. doi:10.1016/0022-0396(86)90031-8

[14]   H. O. Kreiss, “Initial Boundary Value Problems for Hyperbolic Systems,” Communications on Pure and Applied Mathematics, Vol. 23, 1970, pp. 227-298. doi:10.1002/cpa.3160230304

[15]   A. Majda, “The Stability of Multi-Dimensional Shock Fronts,” Memoirs of the American Mathematical Society, Vol. 41, No. 275, 1983, pp. 1-95.

 
 
Top