Scalable Varied Density Clustering Algorithm for Large Datasets

References

[1] J. MacLennan, Z. Tang and B. Crivat, “Data Mining with SQL Server 2008,” Wiley Publishing, Indiana, 2009.

[2]
M. Ester, H. P. Kriegel, J. Sander and X. Xu, “A Density Based Algorithm for Discovering Clusters in large Spatial Datasets with Noise,” Proceedings of International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226-231.

[3]
A. Hinneburg and D. Keim, “An Efficient Approach to Clustering in Large Multimedia databases with Noise,” Proceedings International Conference on Knowledge Dis- covery and Data Mining, 1998, pp. 58-65.

[4]
M. Ankerst, M. Breunig, H. P. Kriegel and J. Sandler, “OPTICS: Ordering Points to Identify the Clustering Structure,” Proceedings of the International Conference on Management of Data (SIGMOD’99), 1999, pp. 49-60.

[5]
A. Fahim, G. Saake, A. Salem, F. Torkey and M. Rama- dan, “Enhanced Density Based Spatial clustering of Application with Noise,” in Proceedings of the 2009 Inter- national Conference on Data Mining, Las Vegas, July 2009, pp. 517-523.

[6]
C.-F. Tsai and C.-W. Liu, “KIDBSCAN: A New Efficient Data Clustering Algorithm,” Artificial Intelligence and Soft Computing-ICAISC, Springer, Berlin/Heidelberg, 2006, pp. 702-711.

[7]
R. Xin and C. H. Duo, “An Improved Clustering Algo- rithm,” International Symposium on Computational Intell- igence and Design, 2008, pp. 394-397.

[8]
Y. El-Sonbaty, M. Ismail and M. Farouk, “An Efficient Density Based Clustering Algorithm for Large Data- bases,” Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), 2004, pp. 673-677.

[9]
A. Fahim, A. Salem, F. Torkey and M. Ramadan, “An Efficient Enhanced k-Means Clustering Algorithm,” Journal of Zhejiang University Science A, Vol. 7, No. 10, 2006, pp. 1626-1633.

[10]
S. Guha, R. Rastogi and K. Shim, “CURE: An Efficient Clustering Algorithms for Large Databases,” Procee- dings of ACM SIGMOD International Conference on Management of Data, Seattle, 1998, pp. 73-84.

[11]
A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, Vol. 31, No. 3, September 1999, pp. 264-323.

[12]
L. Ertoz, M. Steinbach and V. Kumar, “A New Shared Nearest Neighbor Clustering Algorithm and its Appli- cations,” Workshop on Clustering High Dimensional Data and its Applications at 2nd SIAM International Con- ference on Data Mining, 2002.

[13]
M. Emre Celebi, Y. Alp Aslandogan and P. R. Bergs- tresser, “Mining Biomedical Images with Density-Based Clustering,” Proceedings of the International Confer- ence on Information Technology: Coding and Computing, Washington, DC, IEEE Computer Society, Vol. 1, 2005, pp. 163-168.

[14]
J. Sander, M. Ester, H.-P. Kriegel and X. Xu “Density- Based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications,” Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998, pp. 169-194.