SNL  Vol.2 No.3 , July 2012
Genotoxic and Biological Evaluation of a Nano Silica Cross Linked Composite Specifically Used for Intra-Vas Device
The Context: Aims: To evaluate the biocompatibility and in vitro genotoxicity of a non-copper nano silica polymer modified composite for filtering-type intra-vas devices. Settings and Design: Academic research laboratory, Huazhong University of Science and Technology. Prospective experimental study. Methods and Material: Non-copper nano silica polymer modified composite rods were implanted into the back muscle of rabbits for biocompatibility evaluation. Comet assay was applied to the determination of DNA damage, while, Mutagenic activity was tested by means of Ames test using Salmonella typhimurium TA98 and TA 100 tester strains with and without metabolic activation. Statistical analysis used: qualitative and quantitative data were tested using the Chi-square test and Student’s test. Results: Only mild inflammatory reaction was observed in the surrounding tissues of the implanted nano-silica modified polymer composite in the early implantation stage, which was similar to that of the sham-operated group. The inflammatory reaction was completely disappeared after 12 weeks. No significant DNA damage (P > 0.05) were tested on the nano-silica modified polymer composite in Comet assay. In Ames test, the extracts from non-copper composite did not exert mutagenic effect on the bacterial. Conclusions: The non-copper nano silica modified composite did not exhibit in vitro genotoxicity and obvious inflammation in tissue, it would be a safe biomaterial for further clinical trial.

Cite this paper
S. Chen, Y. Bai, X. Huang, J. Suo and J. Li, "Genotoxic and Biological Evaluation of a Nano Silica Cross Linked Composite Specifically Used for Intra-Vas Device," Soft Nanoscience Letters, Vol. 2 No. 3, 2012, pp. 23-28. doi: 10.4236/snl.2012.23005.
[1]   L. Song, Y. Gu, W. Lu, X. Liang and Z. Chen, “A Phase II Randomized Controlled Trial of a Novel Male Contraception, an Intra-Vas Device,” International Journal of Andrology, Vol. 29, No. 4, 2006, pp. 489-495. doi:10.1111/j.1365-2605.2006.00686.x

[2]   Z. L. Chen, X. B. Huang, J. P. Suo, J. Li and L. Sun, “The Contraceptive Effect of a Novel Filtering-Type Nano- Copper Complex/Polymer Composites Intra-Vas Device on Male Animals,” International Journal of Andrology, Vol. 33, No. 6, 2010, pp. 810-817. doi:10.1111/j.1365-2605.2009.01028.x

[3]   C. A. Grillo, M. A. Reigosa and M. F. Lorenzo de Mele, “Effects of Copper Ions Released from Metallic Copper on CHO-K1 Cells,” Mutation Research, Vol. 672, 2008, pp. 45-50.

[4]   C. A. Grillo, M. A. Reigosa and M. A. de Mele, “Does Over-Exposure to Copper Ions Released from Metallic Copper Induce Cytotoxic and Genotoxic Effects on Mammalian Cells?” Contraception, Vol. 81, No. 4, 2010, pp. 343- 349. doi:10.1016/j.contraception.2009.12.003

[5]   D. Prá, S. I. Franke, R. Giulian, M. L. Yoneama, J. F. Dias, B. Erdtmann, et al., “Genotoxicity and Mutagenicity of Iron and Copper in Mice,” Biometals, Vol. 21, No. 3, 2008, pp. 289-297. doi:10.1007/s10534-007-9118-3

[6]   W. Strober, “Trypan Blue Exclusion Test of Cell Viability,” Current Protocols in Immunology, 2001, Appendix 3: Appendix 3B.

[7]   R. R. Tice, E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, et al., “Single Cell Gel/Comet Assay: Guidelines for in Vitro and in Vivo Genetic Toxicology Testing,” Environmental and Molecular Mutagenesis, Vol. 35, No. 3, 2000, pp. 206-221. doi:10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J

[8]   K. Końca, A. Lankoff, A. Banasik, H. Lisowska, T. Kuszewski and S. Gó?d?, “A Cross-Platform Public Domain PC Image-Analysis Program for the Comet Assay,” Mutation Research, Vol. 534, No. 1, 2003, pp. 15-20.

[9]   P. L. Olive and J. P. Banáth, “The Comet Assay: A Method to Measure DNA Damage in Individual Cells,” Nature Protocols, Vol. 1, 2006, pp. 23-29. doi:10.1038/nprot.2006.5

[10]   C. Combes and C. Rey, “Adsorption of Proteins and Calcium Phosphate Materials Bioactivity,” Biomaterials, Vol. 23, No. 13, 2002, pp. 2817-2823. doi:10.1016/S0142-9612(02)00073-X

[11]   J. S. Chang, K. L. Chang, D. F. Hwang and Z. L. Kong, “In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line,” Environtal Science & Technology, Vol. 41, No. 6, 2007, pp. 2064-2068.

[12]   D. Napierska, L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, et al., “Size-Dependent Cy totoxicity of Monodisperse Silica Nanoparticles in Hu man Endothelial Cells,” Small, 2009, Vol. 5, No. 7, pp. 846-853. doi:10.1002/smll.200800461

[13]   H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, A. Arimori, M. Isobe, et al., “Size-Dependent Cytotoxic Effects of Amorphous Silica Nanoparticles on Langer- hans Cells,” Pharmazie, Vol. 65, No. 3, 2010, pp. 199- 201.

[14]   T. Morishige, Y. Yoshioka, H. Inakura, A. Tanabe, X. Yao, S. Tsunoda, et al., “Cytotoxicity of Amorphous Silica Particles against Macrophage-Like THP-1 Cells Depends on Particle-Size and Surface Properties,” Pharmazie, Vol. 65, No. 8, 2010, pp. 596-599.

[15]   M. V. Park, H. W. Verharen, E. Zwart, L. Hernandez, J. van Benthem, A. Elsaesser, et al., “Genotoxicity Evaluation of Amorphous Silica Nanoparticles of Different Sizes Using the Micronucleus and the Plasmid lacZ Gene Mutation Assay,” Nanotoxicology, Vol. 5, No. 2, 2011, pp. 168-181.

[16]   C. A. Barnes, A. Elsaesser, J. Arkusz, A. Smok, J. Palus, A. Le?niak, et al., “Reproducible Comet Assay of Amor- phous Silica Nanoparticles Detects No Genotoxicity,” Nano Letters, Vol. 8, No. 9, 2008, pp. 3069-3074. doi:10.1021/nl801661w

[17]   A. Nieto, S. Areva, T. Wilson, R. Viitala and M. Vallet- Regi, “Cell Viability in a Wet Silica Gel,” Acta Biomaterialia, Vol. 5, No. 9, 2009, pp. 3478-3487. doi:10.1016/j.actbio.2009.05.033