Design Methodology for the Micronozzle-Based Electrospray Evaporative Cooling Devices

Affiliation(s)

Mechanical Engineering, University of Washington, Seattle, United States.

Electrical Engineering, University of Washington, Seattle, United States.

Mechanical Engineering, University of Washington, Seattle, United States.

Electrical Engineering, University of Washington, Seattle, United States.

ABSTRACT

Thermal management of microelectronics demands higher heat flux removal capabilities due to the rapid increase in component and heat flux densities generated by integrated circuits (ICs). Electrospray evaporative cooling (ESEC) is a potential package-level thermal management solution for the next generation of microelectronics. In this paper, a design methodology is presented using numerical electrostatic field modeling to indirectly design proof-of-concept, micronozzle-based ESEC chambers. The results of the numerical modeling and heat transfer experiments indicate that the potential distribution near the micronozzle tip of the ESEC chamber dominates the heat transfer performance of ESEC cooling devices. The surface charge density at the micronozzle tips has a minor impact on the heat transfer performance. The maximum enhancement ratio of 1.87 was achieved by the 8-nozzle ESEC chamber at the lowest heat flux investigated, indicating that the heat transfer capability of ESEC chambers declines as the heat source density increases. The study demonstrates that increasing the number of micronozzles and decreasing the flow rate per nozzle may not effectively improve the heat transfer performance of ESEC devices.

Thermal management of microelectronics demands higher heat flux removal capabilities due to the rapid increase in component and heat flux densities generated by integrated circuits (ICs). Electrospray evaporative cooling (ESEC) is a potential package-level thermal management solution for the next generation of microelectronics. In this paper, a design methodology is presented using numerical electrostatic field modeling to indirectly design proof-of-concept, micronozzle-based ESEC chambers. The results of the numerical modeling and heat transfer experiments indicate that the potential distribution near the micronozzle tip of the ESEC chamber dominates the heat transfer performance of ESEC cooling devices. The surface charge density at the micronozzle tips has a minor impact on the heat transfer performance. The maximum enhancement ratio of 1.87 was achieved by the 8-nozzle ESEC chamber at the lowest heat flux investigated, indicating that the heat transfer capability of ESEC chambers declines as the heat source density increases. The study demonstrates that increasing the number of micronozzles and decreasing the flow rate per nozzle may not effectively improve the heat transfer performance of ESEC devices.

Cite this paper

Wang, H. and Mamishev, A. (2012) Design Methodology for the Micronozzle-Based Electrospray Evaporative Cooling Devices.*Journal of Electronics Cooling and Thermal Control*, **2**, 17-31. doi: 10.4236/jectc.2012.22002.

Wang, H. and Mamishev, A. (2012) Design Methodology for the Micronozzle-Based Electrospray Evaporative Cooling Devices.

References

[1] E. A. Silk, J. Kim and K. Kiger, “Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination,” International Journal of Heat and Mass Transfer, Vol. 49, No. 25-26, 2006, pp. 4910-4920. doi:10.1016/j.ijheatmasstransfer.2006.05.031

[2] A. C. Cotler, E. R. Brown, V. Dhir and M. C. Shaw, “Chip-Level Spray Cooling of an LD-MOSFET RF Power Amplifier,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 2, 2004, pp. 411-416. doi:10.1109/TCAPT.2004.828550

[3] X. Feng and J. E. Bryan, “Application of Electrohydrodynamic Atomization to Two-Phase Impingement Heat Transfer,” Journal of Heat Transfer-Transactions of the ASME, Vol. 130, No. 7, 2008, 072202. doi:10.1115/1.2885178

[4] S. V. Garimella, “Advances in Mesoscale Thermal Management Technologies for Microelectronics,” Microelectronics Journal, Vol. 37, No. 11, 2006, pp. 1165-1185. doi:10.1016/j.mejo.2005.07.017

[5] T. Widerski, E. Raj and Z. Lisik, “Cooling Microstructure for Automotive Electronic Module,” The International Conference on “Computer as a Tool”, Warsaw, 9-12 September 2007, pp. 1429-1432.

[6] V. Khanikar, I. Mudawar and T. Fisher, “Flow Boiling in a Micro-Channel Coated with Carbon Nanotubes,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 2831 May 2008, pp. 960-969.

[7] J. Schutze, H. Ilgen and W. R. Fahrner, “An Integrated Micro Cooling System for Electronic Circuits,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, 2001, pp. 281-285. doi:10.1109/41.915406

[8] J. Lee and I. Mudawar, “Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase MicroChannel Heat Sinks—Part 1: Experimental Methods and Flow Visualization Results,” International Journal of Heat and Mass Transfer, Vol. 51, No. 17-18, 2008, pp. 4315-4326. doi:10.1016/j.ijheatmasstransfer.2008.02.012

[9] J. Lee and I. Mudawar, “Low-Temperature Two-Phase Micro-Channel Cooling for High-Heat-Flux Thermal Management of Defense Electronics,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 132-144.

[10] Y. J. Kim, Y. K. Joshi and A. G. Fedorou, “An Absorption Based Miniature Heat Pump System for Electronics Cooling,” International Journal of Refrigeration-Revue Internationale Du Froid, Vol. 31, 2008, pp. 23-33.

[11] L. N. Jiang, J. Mikkelsen, J. M. Koo, D. Huber, S. H. Yao, L. Zhang, P. Zhou, J. G. Maveety, R. Prasher, J. G. Santiago, T. W. Kenny and K. E. Goodson, “Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits,” IEEE Transactions on Components and Packing Technologies, Vol. 25, 2005, pp. 347-355.

[12] N. R. Jankowski, L. Everhart, B. R. Geil, C. W. Tipton, J. Chaney, T. Heil and W. Zimbeck, “Stereolithographically Fabricated Aluminum Nitride Microchannel Substrates for Integrated Power Electronics Cooling,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 180-188.

[13] V. Chiriac and F. Chiriac, “An Overview and Comparison of Various Refrigeration Methods for Microelectronics Cooling,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 618-625.

[14] V. Singhal and S. V. Garimella, “Induction Eectrohydrodynamics Micropump for High Heat Flux Cooling,” Sensors and Actuators A: Physical, Vol. 134, No. 2, 2007, pp. 650-659. doi:10.1016/j.sna.2006.05.007

[15] M. Stubbe, M. Holtappels and J. Gimsa, “A New Working Principle for AC Electro-Hydrodynamic On-Chip Micro-Pumps,” Journal of Physics D: Applied Physics, Vol. 40, No. 21, 2007, pp. 6850-6856. doi:10.1088/0022-3727/40/21/055

[16] C. K. Lee, A. J. Robinson and C. Y. Ching, “Development of EHD Ion-Drag Micropump for Microscale Electronics Cooling,” IEEE 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC 2007), Budapest, 17-19 September 2007, pp. 1-6.

[17] J. Darabi and H. X. Wang, “Development of an Electrohydrodynamic Injection Micropump and Its Potential Application in Pumping Fluids in Cryogenic Cooling Systems,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, 2005, pp. 747-755. doi:10.1109/JMEMS.2005.845413

[18] J. Darabi, M. M. Ohadi and D. DeVoe, “An Electrohydrodynamic Polarization Micropump for Electronic Cooling,” Journal of Microelectromechanical Systems, Vol. 10, No. 1, 2001, pp. 98-106. doi:10.1109/84.911097

[19] J. Darabi and K. Ekula, “Development of a Chip-Integrated Micro Cooling Device,” Microelectronics Journal, Vol. 34, No. 11, 2003, pp. 1067-1074. doi:10.1016/j.mejo.2003.09.010

[20] S. Chowdhury, J. Darabi, M. Ohadi and J. Lawler, “Chip Integrated Micro Cooling System for High Heat Flux Electronic Cooling Applications,” pp. 1-9. http://www.atec-ahx.com/about/publications/Chowdhury%202002.pdf

[21] K. Adamiak, A. Mizuno and M. Nakano, “Electrohydrodynamic Flow in Optoelectrostatic Micropump: Experiment versus Numerical Simulation,” IEEE Transactions on Industry Applications, Vol. 45, No. 2, 2009, pp. 615622. doi:10.1109/TIA.2009.2013555

[22] J. Sjodahl, J. Melin, P. Griss, A. Emmer, G. Stemme and J. Roeraade, “Characterization of Micromachined Hollow Tips for Two-Dimensional Nanoelectrospray Mass Spectrometry,” Rapid Communications in Mass Spectrometry, Vol. 17, No. 4, 2003, pp. 337-341. doi:10.1002/rcm.920

[23] B. Q. T. Si, D. Byun and S. Lee, “Experimental and Theoretical Study of a Cone-Jet for an Electrospray Microthruster Considering the Iinterference Effect in an Array of Nozzles,” Journal of Aerosol Science, Vol. 38, No. 9, 2007, pp. 924-934. doi:10.1016/j.jaerosci.2007.07.003

[24] G. A. Schultz, T. N. Corso, S. J. Prosser and S. Zhang, “A Fully Iintegrated Monolithic Microchip Electrospray Device for Mass Spectrometry,” Analytical Chemistry, Vol. 72, No. 17, 2000, pp. 4058-4063. doi:10.1021/ac000325y

[25] J. Doshi and D. H. Reneker, “Electrospinning Process and Applications of Electrospun Fibers,” Journal of Electrostatics, Vol. 35, No. 2-3, 1995, pp. 151-160. doi:10.1016/0304-3886(95)00041-8

[26] X. Feng and J. E. Bryan, “Application of Electrohydrodynamic Atomization to Two-Phase Impingement Heat Transfer,” Transactions of the ASME Journal of Heat Transfer, Vol. 130, No. 7, 2008, p. 072202. doi:10.1115/1.2885178

[27] H. C. Wang, A. V. Mamishev and C. P. Hsu, “The Enhancement Ratio of Corresponding Convection Heat Transfer Coefficient Using Electrospray Evaporative Cooling System,” ASME Summer Heat Transfer Conference, San Francisco, 19-23 July 2009.

[28] W. Deng and A. Gomez, “Electrospray Cooling for Microelectronics,” International Journal of Heat and Mass Transfer, Vol. 54, No. 11-12, 2011, pp. 2270-2275. doi:10.1016/j.ijheatmasstransfer.2011.02.038

[29] A. Jaworek and A. T. Sobczyk, “Electrospraying Route to Nanotechnology: An Overview,” Journal of Electrostatics, Vol. 66, No. 3-4, 2008, pp. 197-219. doi:10.1016/j.elstat.2007.10.001

[30] A. G. Bailey, “Electrostatic Spraying of Liquids,” Research Studies Press Ltd., Taunton, 1988.

[31] A. Jaworek and A. Krupa, “Classification of the Modes of EHD Spraying,” Journal of Aerosol Science, Vol. 30, No. 7, 1999, pp. 873-893. doi:10.1016/S0021-8502(98)00787-3

[32] Y. Tatemoto, R. Ishikawa, M. Takeuchi, T. Takeshita, K. Noda and T. Okazaki, “An Electrospray Method Using a Multi-Capillary Nozzle Emitter,” Chemical Engineering & Technology, Vol. 30, No. 9, 2007, pp. 1274-1279. doi:10.1002/ceat.200700060

[33] H. Watanabe, T. Matsuyama and H. Yamamoto, “Experimental Study on Electrostatic Atomization of Highly Viscous Liquids,” Journal of Electrostatics, Vol. 57, No. 2, 2003, pp. 183-197. doi:10.1016/S0304-3886(02)00139-0

[34] X. F. Zhong, R. Yi, A. E. Holliday and D. D. Y. Chen, “Field Distribution in an Electrospray Ionization Source Determined by Finite Element Method,” Rapid Communications in Mass Spectrometry, Vol. 23, No. 5, 2009, pp. 689-697. doi:10.1002/rcm.3914

[35] A. R. Jones and K. C. Thong, “Production of Charged Monodisperse Fuel Droplets by Electrical Dispersion,” Journal of Physics D: Applied Physics, Vol. 4, 1971, pp. 1159-1166.

[36] D. P. H. Smith, “The Electrohydrodynamic Atomization of Liquids,” IEEE Transactions on Industry Applications, Vol. 22, No. 3, 1986, pp. 527-535. doi:10.1109/TIA.1986.4504754

[37] M. Cloupeau and B. Prunetfoch, “Electrohydrodynamic Spraying Functioning Modes—A Critical Review,” Journal of Aerosol Science, Vol. 25, No. 6, 1994, pp. 10211036. doi:10.1016/0021-8502(94)90199-6

[38] W. W. Deng, J. F. Klemic, X. H. Li, M. A. Reed and A. Gomez, “Increase of Electrospray throughput Using Multiplexed Microfabricated Sources for the Scalable Generation of Monodisperse Droplets,” Journal of Aerosol Science, Vol. 37, No. 6, 2006, pp. 696-714. doi:10.1016/j.jaerosci.2005.05.011

[39] W. Deng, C. M. Waits, B. Morgan and A. Gomez, “Compact Multiplexing of Monodisperse Electrosprays,” Journal of Aerosol Science, Vol. 40, No. 10, 2009, pp. 907918. doi:10.1016/j.jaerosci.2009.07.002

[40] R. T. Kelly, J. S. Page, I. Marginean, K. Tang and R. D. Smith, “Nanoelectrospray Emitter Arrays Providing Interemitter Electric Field Uniformity,” Analytical Chemistry, Vol. 80, No. 14, 2008, pp. 5660-5665. doi:10.1021/ac800508q

[41] F. P. Incropera, D. P. DeWitt, T. L. Berqman and A. S. Lavine, “Introduction to Heat Transfer,” 5 Edition, John Wiley & Sons, Inc., New York, 2006.

[1] E. A. Silk, J. Kim and K. Kiger, “Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination,” International Journal of Heat and Mass Transfer, Vol. 49, No. 25-26, 2006, pp. 4910-4920. doi:10.1016/j.ijheatmasstransfer.2006.05.031

[2] A. C. Cotler, E. R. Brown, V. Dhir and M. C. Shaw, “Chip-Level Spray Cooling of an LD-MOSFET RF Power Amplifier,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 2, 2004, pp. 411-416. doi:10.1109/TCAPT.2004.828550

[3] X. Feng and J. E. Bryan, “Application of Electrohydrodynamic Atomization to Two-Phase Impingement Heat Transfer,” Journal of Heat Transfer-Transactions of the ASME, Vol. 130, No. 7, 2008, 072202. doi:10.1115/1.2885178

[4] S. V. Garimella, “Advances in Mesoscale Thermal Management Technologies for Microelectronics,” Microelectronics Journal, Vol. 37, No. 11, 2006, pp. 1165-1185. doi:10.1016/j.mejo.2005.07.017

[5] T. Widerski, E. Raj and Z. Lisik, “Cooling Microstructure for Automotive Electronic Module,” The International Conference on “Computer as a Tool”, Warsaw, 9-12 September 2007, pp. 1429-1432.

[6] V. Khanikar, I. Mudawar and T. Fisher, “Flow Boiling in a Micro-Channel Coated with Carbon Nanotubes,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 2831 May 2008, pp. 960-969.

[7] J. Schutze, H. Ilgen and W. R. Fahrner, “An Integrated Micro Cooling System for Electronic Circuits,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, 2001, pp. 281-285. doi:10.1109/41.915406

[8] J. Lee and I. Mudawar, “Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase MicroChannel Heat Sinks—Part 1: Experimental Methods and Flow Visualization Results,” International Journal of Heat and Mass Transfer, Vol. 51, No. 17-18, 2008, pp. 4315-4326. doi:10.1016/j.ijheatmasstransfer.2008.02.012

[9] J. Lee and I. Mudawar, “Low-Temperature Two-Phase Micro-Channel Cooling for High-Heat-Flux Thermal Management of Defense Electronics,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 132-144.

[10] Y. J. Kim, Y. K. Joshi and A. G. Fedorou, “An Absorption Based Miniature Heat Pump System for Electronics Cooling,” International Journal of Refrigeration-Revue Internationale Du Froid, Vol. 31, 2008, pp. 23-33.

[11] L. N. Jiang, J. Mikkelsen, J. M. Koo, D. Huber, S. H. Yao, L. Zhang, P. Zhou, J. G. Maveety, R. Prasher, J. G. Santiago, T. W. Kenny and K. E. Goodson, “Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits,” IEEE Transactions on Components and Packing Technologies, Vol. 25, 2005, pp. 347-355.

[12] N. R. Jankowski, L. Everhart, B. R. Geil, C. W. Tipton, J. Chaney, T. Heil and W. Zimbeck, “Stereolithographically Fabricated Aluminum Nitride Microchannel Substrates for Integrated Power Electronics Cooling,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 180-188.

[13] V. Chiriac and F. Chiriac, “An Overview and Comparison of Various Refrigeration Methods for Microelectronics Cooling,” IEEE 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 28-31 May 2008, pp. 618-625.

[14] V. Singhal and S. V. Garimella, “Induction Eectrohydrodynamics Micropump for High Heat Flux Cooling,” Sensors and Actuators A: Physical, Vol. 134, No. 2, 2007, pp. 650-659. doi:10.1016/j.sna.2006.05.007

[15] M. Stubbe, M. Holtappels and J. Gimsa, “A New Working Principle for AC Electro-Hydrodynamic On-Chip Micro-Pumps,” Journal of Physics D: Applied Physics, Vol. 40, No. 21, 2007, pp. 6850-6856. doi:10.1088/0022-3727/40/21/055

[16] C. K. Lee, A. J. Robinson and C. Y. Ching, “Development of EHD Ion-Drag Micropump for Microscale Electronics Cooling,” IEEE 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC 2007), Budapest, 17-19 September 2007, pp. 1-6.

[17] J. Darabi and H. X. Wang, “Development of an Electrohydrodynamic Injection Micropump and Its Potential Application in Pumping Fluids in Cryogenic Cooling Systems,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, 2005, pp. 747-755. doi:10.1109/JMEMS.2005.845413

[18] J. Darabi, M. M. Ohadi and D. DeVoe, “An Electrohydrodynamic Polarization Micropump for Electronic Cooling,” Journal of Microelectromechanical Systems, Vol. 10, No. 1, 2001, pp. 98-106. doi:10.1109/84.911097

[19] J. Darabi and K. Ekula, “Development of a Chip-Integrated Micro Cooling Device,” Microelectronics Journal, Vol. 34, No. 11, 2003, pp. 1067-1074. doi:10.1016/j.mejo.2003.09.010

[20] S. Chowdhury, J. Darabi, M. Ohadi and J. Lawler, “Chip Integrated Micro Cooling System for High Heat Flux Electronic Cooling Applications,” pp. 1-9. http://www.atec-ahx.com/about/publications/Chowdhury%202002.pdf

[21] K. Adamiak, A. Mizuno and M. Nakano, “Electrohydrodynamic Flow in Optoelectrostatic Micropump: Experiment versus Numerical Simulation,” IEEE Transactions on Industry Applications, Vol. 45, No. 2, 2009, pp. 615622. doi:10.1109/TIA.2009.2013555

[22] J. Sjodahl, J. Melin, P. Griss, A. Emmer, G. Stemme and J. Roeraade, “Characterization of Micromachined Hollow Tips for Two-Dimensional Nanoelectrospray Mass Spectrometry,” Rapid Communications in Mass Spectrometry, Vol. 17, No. 4, 2003, pp. 337-341. doi:10.1002/rcm.920

[23] B. Q. T. Si, D. Byun and S. Lee, “Experimental and Theoretical Study of a Cone-Jet for an Electrospray Microthruster Considering the Iinterference Effect in an Array of Nozzles,” Journal of Aerosol Science, Vol. 38, No. 9, 2007, pp. 924-934. doi:10.1016/j.jaerosci.2007.07.003

[24] G. A. Schultz, T. N. Corso, S. J. Prosser and S. Zhang, “A Fully Iintegrated Monolithic Microchip Electrospray Device for Mass Spectrometry,” Analytical Chemistry, Vol. 72, No. 17, 2000, pp. 4058-4063. doi:10.1021/ac000325y

[25] J. Doshi and D. H. Reneker, “Electrospinning Process and Applications of Electrospun Fibers,” Journal of Electrostatics, Vol. 35, No. 2-3, 1995, pp. 151-160. doi:10.1016/0304-3886(95)00041-8

[26] X. Feng and J. E. Bryan, “Application of Electrohydrodynamic Atomization to Two-Phase Impingement Heat Transfer,” Transactions of the ASME Journal of Heat Transfer, Vol. 130, No. 7, 2008, p. 072202. doi:10.1115/1.2885178

[27] H. C. Wang, A. V. Mamishev and C. P. Hsu, “The Enhancement Ratio of Corresponding Convection Heat Transfer Coefficient Using Electrospray Evaporative Cooling System,” ASME Summer Heat Transfer Conference, San Francisco, 19-23 July 2009.

[28] W. Deng and A. Gomez, “Electrospray Cooling for Microelectronics,” International Journal of Heat and Mass Transfer, Vol. 54, No. 11-12, 2011, pp. 2270-2275. doi:10.1016/j.ijheatmasstransfer.2011.02.038

[29] A. Jaworek and A. T. Sobczyk, “Electrospraying Route to Nanotechnology: An Overview,” Journal of Electrostatics, Vol. 66, No. 3-4, 2008, pp. 197-219. doi:10.1016/j.elstat.2007.10.001

[30] A. G. Bailey, “Electrostatic Spraying of Liquids,” Research Studies Press Ltd., Taunton, 1988.

[31] A. Jaworek and A. Krupa, “Classification of the Modes of EHD Spraying,” Journal of Aerosol Science, Vol. 30, No. 7, 1999, pp. 873-893. doi:10.1016/S0021-8502(98)00787-3

[32] Y. Tatemoto, R. Ishikawa, M. Takeuchi, T. Takeshita, K. Noda and T. Okazaki, “An Electrospray Method Using a Multi-Capillary Nozzle Emitter,” Chemical Engineering & Technology, Vol. 30, No. 9, 2007, pp. 1274-1279. doi:10.1002/ceat.200700060

[33] H. Watanabe, T. Matsuyama and H. Yamamoto, “Experimental Study on Electrostatic Atomization of Highly Viscous Liquids,” Journal of Electrostatics, Vol. 57, No. 2, 2003, pp. 183-197. doi:10.1016/S0304-3886(02)00139-0

[34] X. F. Zhong, R. Yi, A. E. Holliday and D. D. Y. Chen, “Field Distribution in an Electrospray Ionization Source Determined by Finite Element Method,” Rapid Communications in Mass Spectrometry, Vol. 23, No. 5, 2009, pp. 689-697. doi:10.1002/rcm.3914

[35] A. R. Jones and K. C. Thong, “Production of Charged Monodisperse Fuel Droplets by Electrical Dispersion,” Journal of Physics D: Applied Physics, Vol. 4, 1971, pp. 1159-1166.

[36] D. P. H. Smith, “The Electrohydrodynamic Atomization of Liquids,” IEEE Transactions on Industry Applications, Vol. 22, No. 3, 1986, pp. 527-535. doi:10.1109/TIA.1986.4504754

[37] M. Cloupeau and B. Prunetfoch, “Electrohydrodynamic Spraying Functioning Modes—A Critical Review,” Journal of Aerosol Science, Vol. 25, No. 6, 1994, pp. 10211036. doi:10.1016/0021-8502(94)90199-6

[38] W. W. Deng, J. F. Klemic, X. H. Li, M. A. Reed and A. Gomez, “Increase of Electrospray throughput Using Multiplexed Microfabricated Sources for the Scalable Generation of Monodisperse Droplets,” Journal of Aerosol Science, Vol. 37, No. 6, 2006, pp. 696-714. doi:10.1016/j.jaerosci.2005.05.011

[39] W. Deng, C. M. Waits, B. Morgan and A. Gomez, “Compact Multiplexing of Monodisperse Electrosprays,” Journal of Aerosol Science, Vol. 40, No. 10, 2009, pp. 907918. doi:10.1016/j.jaerosci.2009.07.002

[40] R. T. Kelly, J. S. Page, I. Marginean, K. Tang and R. D. Smith, “Nanoelectrospray Emitter Arrays Providing Interemitter Electric Field Uniformity,” Analytical Chemistry, Vol. 80, No. 14, 2008, pp. 5660-5665. doi:10.1021/ac800508q

[41] F. P. Incropera, D. P. DeWitt, T. L. Berqman and A. S. Lavine, “Introduction to Heat Transfer,” 5 Edition, John Wiley & Sons, Inc., New York, 2006.