IJAA  Vol.2 No.2 , June 2012
Simultaneous Gravitational and Refractive Lensing
ABSTRACT
The principal testing ground for general relativity is the observable Universe. Gravitational lensing is the leading observational technique that gives insight into the distribution of baryonic matter in the stellar, galactic and cosmological scale, as well as the distribution of dark matter and dark energy, due to their gravitational interaction. Interpretation of ever more precise observational data requires increasingly subtle analytical techniques. In this paper, I discuss a formalism that can handle a nonlinear superposition of gravitational and refractive lensing by a grouping of baryonic matter, dark matter and dark energy for a given distribution of those entities (i.e. for a given spacetime metric) and their refractive properties. The role of refraction in gravitational lensing is exemplified in the case of a microlensing event and a signature of such an effect is discussed.

Cite this paper
W. Chyla, "Simultaneous Gravitational and Refractive Lensing," International Journal of Astronomy and Astrophysics, Vol. 2 No. 2, 2012, pp. 76-81. doi: 10.4236/ijaa.2012.22011.
References
[1]   D. Walsh, R. F. Carswell and R. J. Weymann, “0957 + 561 A, B: Twin Quasistellar Objects or Gravitational Lens?” Nature, Vol. 279, No. 5712, 1979, pp. 381-384. doi:10.1038/279381a0

[2]   A. Udalski, M. Szymański, J. Ka?u?ny, M. Kubiak, W. Krzemiński, M. Mateo, G. W. Preston and B. Paczyński, “The Optical Gravitational Lensing Experiment. Discovery of the First Candidate Microlensing Event in the Direction of the Galactic Bulge,” Acta Astronomica, Vol. 43, No. 3, 1993, pp. 289-294.

[3]   M. Jaroszyński, J. Skowron, A. Udalski, M. Kubiak, M. K. Szymański, G. Pietrzyński, I. Soszyński, ?. Wyrzykowski, K. Ulaczyk and R. Poleski, “Binary Lenses in OGLE-III EWS Database. Seasons 2006-2008,” Acta Astronomica, Vol. 60, No. 3, 2010, pp. 197-231.

[4]   C. Alcock, R. A. Allsman, D. Alves, T. S. Axelrods, K. H. Bennett, et al., “The MACHO Project: 45 Candidate Microlensing Events from the First-Year Galactic Bulge Data,” The Astrophysical Journal, Vol. 479, No. 1, 1997, pp. 119-146. doi:10.1086/303851

[5]   P. Tisserand, L. Guillou, C. Afonso, J. N. Albert, et al., “Limits on the MACHO Content of the Galactic Halo from EROS-2 Survey of the Magellanic Clouds,” Astronomy and Astrophysics, Vol. 469, No. 2, 2007, pp. 387-404. doi:10.1051/0004-6361:20066017

[6]   S. Dong, F. Abe, G. Bolt, A. Udalski, et al., “Microlensing Event MOA-2007-BLG-400: Exhuming the Buried Signature of a Cool Jovian-Mass Planet,” The Astrophysical Journal, Vol. 698, No. 2, 2009, pp. 1826-1837.

[7]   J. Janczak, F. Abe, J. H. An, T. Anguita, V. Batista, et al., “Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely to Be in the Galactic Bulge,” The Astrophysical Journal, Vol. 711, No. 2, 2010, pp. 731-743. doi:10.1088/0004-637X/711/2/731

[8]   B. T. Draine, “Lensing of Stars by Spherical Gas Clouds,” Astrophysical Journal Letters, Vol. 509, No. 1, 1998, pp. L41-L44. doi:10.1086/311751

[9]   R. R. Rafikov and B. T. Draine, “Constraints on Cold H2 Clouds from Gravitational Microlensing Searches,” The Astrophysical Journal, Vol. 547, No. 1, 2001, pp. 207- 216. doi:10.1086/318355

[10]   W. T. Chyla, “I. Geometrical Optics of Variable-Frequency Light Rays: Theoretical Basis,” Canadian Journal of Physics, Vol. 78, No. 8, 2000, pp. 721-745.

[11]   W. T. Chyla, “III. Geometrical Optics of Variable-Frequency Light Rays in the General Relativistic Regime: Combined Gravitational and Refractive Lensing,” Canadian Journal of Physics, Vol. 78, No. 8, 2000, pp. 755-767. doi:10.1139/p00-021

[12]   B. Paczyński, “Gravitational Microlensing by the Galactic Halo,” The Astrophysical Journal, Vol. 304, No. 1, 1986, pp. 1-5.

[13]   R. S. Ellis, “Gravitational Lensing: A Unique Probe of Dark Matter and Dark Energy,” Philosophical Transactions of the Royal Society A, Vol. 368, No. 1914, 2010, pp. 967-987.

[14]   T. Treu, “Strong Lensing by Galaxies,” Annual Review of Astronomy and Astrophysics, Vol. 48, No. 1, 2010, pp. 87-125. doi:10.1146/annurev-astro-081309-130924

[15]   J. P. Uzan, “Tests of General Relativity on Astrophysical Scales,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2219-2246. doi:10.1007/s10714-010-1047-8

[16]   A. Zakharov, “Lensing by Exotic Objects,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2301- 2322. doi:10.1007/s10714-010-1021-5

[17]   B. Paczyński, “Is There a Black Hole in the Sky?” Nature, Vol. 321, No. 6068, 1986, pp. 419-420. doi:10.1038/321419a0

[18]   V. Bozza, “Gravitational Lensing by Black Holes,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2269-2300. doi:10.1007/s10714-010-0988-2

[19]   R. W. Schmidt and J. Wambsganss, “Quasar Microlensing,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2127-2150. doi:10.1007/s10714-010-0956-x

[20]   P. Schneider, C. Kochanek and J. Wambsganss, “Gravitational Lensing: Strong, Weak and Micro,” Springer, Berlin, 2006.

[21]   E. Gates, “Einstein’s Telescope: The Hunt for Dark Matter and Dark Energy in the Universe,” Norton, New York, 2009.

[22]   D. M. Wittman, J. A. Tyson, D. Kirkman, I. Dell’Antonio and G. Bernstein, “Detection of Weak Gravitational Lens- ing Distortions of Distant Galaxies by Cosmic Dark Matter at Large Scales,” Nature, Vol. 405, No. 6783, 2000, pp. 143-148.

[23]   D. Huterer, “Weak Lensing and Dark Energy,” Physical Review D, Vol. 65, No. 6, 2002, Article ID: 063001. doi:10.1103/PhysRevD.65.063001

[24]   D. Clowe, M. Brada?, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and D. Zaritsky, “A Direct Empirical Proof of the Existence of Dark Matter,” The Astrophysical Journal Letters, Vol. 648, No. 2, 2006, pp. L109- L113. doi:10.1086/508162

[25]   D. Huterer, “Weak Lensing, Dark Matter and Dark Energy,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2177-2195. doi:10.1007/s10714-010-1051-z

[26]   M. Dominik, “Studying Planet Populations by Gravitational Microlensing,” General Relativity and Gravitation, Vol. 42, No. 9, 2010, pp. 2075-2100. doi:10.1007/s10714-010-0930-7

 
 
Top