AiM  Vol.2 No.2 , June 2012
A Study of Scanning Electron Microscope of Vancomycin Resistant Enterococcus faecalis from Clinical Isolates
ABSTRACT
Vancomycin-resistant Enterococcus faecalis pose an emerging health risk, but little is known about the precise epidemiology for vancomycin resistance. The glycopeptide resistant was studied using different techniques such as broth macrodilution, agar dilution combined with agar diffusion, morphology cell changes by scanning electron microscopy. Eight VREF isolated from different clinical samples were used. Results showed low level and high level resistant to vancomycin antibiotic at concentration of 64 to 128 μg/ml, but antibacterial activity was reduced to 256 μg/ml, the SEM revaled increased in the cell size with the antibiotic compared to control and standard culture. The technique constitutes simple method for the detection of organism.

Cite this paper
A. Kumar Oli, R. Sungar, N. Shivshetty, R. Hosamani and K. Chandrakanth Revansiddappa, "A Study of Scanning Electron Microscope of Vancomycin Resistant Enterococcus faecalis from Clinical Isolates," Advances in Microbiology, Vol. 2 No. 2, 2012, pp. 93-97. doi: 10.4236/aim.2012.22012.
References
[1]   R. Creti, M. Imperi, L. Bertuccini, F. Fabretti, G. Orefici, D. R. Rosa and L. Baldassarri, “Survey for Virulence Determinants among Enterococcus faecalis Isolated from Different Sources,” Journal of Medical Microbiology, Vol. 53, No. 1, 2004, pp. 13-20. doi:10.1099/jmm.0.05353-0

[2]   E. B. De Marques and S. Suzart, “Occurrence of Virulence-Associated Genes in Clinical Enterococcus faecalis Strains Isolated in Londrina, Brazil,” Journal of Medical Microbiology, Vol. 53, No. 11, 2004, pp. 1069-1073. doi:10.1099/jmm.0.45654-0

[3]   M. J. G. Burgos, R. L. Lopez, H. Abriouel, N. B. Omar and A. Galvez, “Multilocus Sequence Typing of Enterococcus faecalis from Vegetable Foods Reveals Two New Sequence Types,” Foodborne Pathogens and Disease, Vol. 6, No. 3, 2009, pp. 321-327. doi:10.1089/fpd.2008.0169

[4]   A. Aakra, H. Veb?, L. Snipen, H. Hirt, A. Aastveit, V. Kapur, G. Dunny, B. Murray and I. F. Nes, “Transcriptional Response of Enterococcus faecalis V583 to Erythromycin,” Antimicrobial Agents and Chemotherapy, Vol. 49, No. 6, 2005. pp. 2246-2259. doi:10.1128/AAC.49.6.2246-2259.2005

[5]   A. Giacometti, O. Cirioni, A. M. Schimizzi, M. S. Del Prete, F. Barchiesi, M. M. D’errico, E. Petrelli and G. Scalise, “Epidemiology and Microbiology of Surgical Wound Infections,” Journal of Medical Microbiology, Vol. 38, No. 2, 2000, pp. 918-922.

[6]   A. H?llgren, C. Claesson, B. Saeedi, H.-J. Isaksson, H. Hanberger and L. E. Nilsson, “Molecular Detection of Aggregation Substance, Enterococcal Surface Protein, and Cytolysin Genes and in Vitro Adhesion to Urinary Catheters of Enterococcus faecalis and E. faecium of Clinical Origin,” International Journal of Medical Microbiology, Vol. 299, No. 5, 2009, pp. 323-332. doi:10.1128/AAC.49.6.2246-2259.2005

[7]   D. R. Schaberg, D. H. Culver and R. P. Gaynes, “Major Trends in the Microbial Etiology of Nosocomial Infection,” The American Journal of Medicine, Vol. 91, No. 3, 1991, pp. 72S-75S. doi:10.1016/0002-9343(91)90346-Y

[8]   D. E. Low, N. Keller and A. Barth, R. N. Jones, “Clinical Prevalence, Antimicrobial Susceptibility, and Geographic Resistance Patterns of Enterococci: Results from the SEN-TRY Antimicrobial Surveillance Program, 1997-1999,” Clinical Infectious Diseases, Vol. 32, Suppl. 2, 2001, pp. S133-S145.

[9]   S. Mohanty, S. Jose, R. Singhal, S. Sood, B. Dhawan, B. K. Das, et al., “Species Prevalence and Antimicrobial Susceptibility of Enterococci Isolated in a Tertiary Care Hospital of North India,” Southeast Asian J Trop Med Public Health, Vol. 36, No. 4, 2005, pp. 962-965.

[10]   L. V. Thomas and J. W. T. Wimpenny, “Investigation of the Effect of Combined Variations in Temperature, pH and NaCl Concentrations on Nisin Inhibition of Listeria monocytogenes and Staphylococcus aureus,” Applied and Environmental Microbiology, Vol. 62, No. 3, 1996, pp. 2006-2012

[11]   H. J. Heipieper, F. J. Weber, J. Sikkema, H. Keweloh and J. A. M. de Bont, “Mechanism Behind Resistance of Whole Cells to Toxic Organic Solvents,” Trends in Biotechnology, Vol. 12, No. 10, 1993, pp. 409-415. doi:10.1016/0167-7799(94)90029-9

[12]   D. Greenwood and F. O’Grady, “Antibiotic-Induced Surface Changes in Microorganisms Demonstrated by Scanning Electron Microscopy,” Science, Vol. 163, No. 3871, 1969, pp. 1076-1078. doi:10.1126/science.163.3871.1076

[13]   D. Greenwood and F. O’Grady, “Scanning Electron Microscopy of Staphylococcus aureus Exposed to Some Common Anti-Staphylococcal Agents,” Journal of General Microbiology, Vol. 70, No. 2, 1972, pp. 263-270.

[14]   T. S. J. Elliott and D. Greenwood, “The Response of Pseudomonas aeruginosa to Azlocillin, Ticarcillin and Cefsulodin,” Journal of General Microbiology, Vol. 16, No. 3, 1983, 351-362. doi:10.1099/00222615-16-3-351

[15]   C. R. Jackson, P. J. Fedorka-Cray, J. B. Barrett and S. R. Ladely, “Effects of Tylosin Use on Erythromycin Resistance in Enterococci Isolated from Swine,” Applied and Environmental Microbiology, Vol. 70, No. 7, 2004, pp. 4205-4210. doi:10.1128/AEM.70.7.4205-4210.2004

[16]   E. B. De Marques, S. Suzart, “Occurrence of Virulence-Associated Genes in Clinical Enterococcus faecalis Strains Isolated in Londrina, Brazil,” Journal of Medical Microbiology, Vol. 53, No. 11, 2004, pp. 1069-1073. doi:10.1099/jmm.0.45654-0

[17]   National Committee for Clinical Laboratory Standards, “Performance Standards for Antimicrobial Disk Susceptibility Testing,” Twelfth Informational Supplement (M100-S12), ACCLS, Wayne, 2002.

[18]   Clinical and Laboratory Standards Institute, “M07-A.B. Methods for Dilution Antimicrobial Susceptility Tests for Bacteria that Grow Aerobically; Approved Standard: 8th Edition,” CLSI, Wayne, 2009.

[19]   F. Lanzarini, “Effect of Teicoplanin and Vancomycin on Staphylococcus Ultrastructure,” Microbiologica, Vol. 13, 1990, pp. 231-237

[20]   S. Raju, G. Rao, S. A. Patil and C. R. Kelmani, “Increase in Cell Size and Acid Tolerance Reponse in a Stepwise-Adapted Methicillin Resistant Staphylococcus aureus Mutant,” World Journal of Microbiology and Biotechnology, Vol. 23, No. 9, 2007, pp. 1227-1232. doi:10.1007/s11274-007-9352-4

[21]   I. Dupre, S. Zanetti, A. M. Schito, G. Fadda and L. A. Sechi, “Incidence of Virulence Determinants in Clinical Enterococcus faecium and Enterococcus faecalis Isolates Collected in Sardinia (Italy),” Journal of Medical Microbiology, Vol. 52, No. 6, 2003, pp. 491-498. doi:10.1099/jmm.0.05038-0

[22]   A. H. C. Uttley, C. H. Collins, J. Naidou and R. C. George, “Vancomycin-Resistant Enterococci,” The Lancet, Vol. 331, No. 8575, 1988, pp. 57-58. doi:10.1016/S0140-6736(88)91037-9

[23]   D. M. Shales, A. Bouvet, C. Devine, J. H. Shales, S. Al-Obeid and R. Williamson, “Inducible, Transferable Resistance to Vancomycin in Enterococcus faecalis A256,” Antimicrobial Agents and Chemotherapy, Vol. 33, No. 2, 1989, pp. 198-203.

[24]   M. O. Clements and S. J. Foster, “Stress Resistance in Staphylococcus aureus,” Trends in Microbiology, Vol. 7, No. 11, 1999, pp. 458-462. doi:10.1016/S0966-842X(99)01607-8

[25]   G. W. O’Hara and A. R. Glenn, “The Adaptive Acid Tolerance Response in Root Nodule Bacteria and Escherichia coli,” Archives of Microbiology, Vol. 161, No. 4, 1994, pp. 286-292. doi:10.1007/BF00303582

[26]   M. Ritz, J. L. Tholozan, M. Federighi and M. F. Pilet, “Morphological and Physiological Characterization of Listeria monocytogenes Subjected to High Hydrostatic Pressure,” Applied and Environmental Microbiology, Vol. 67, No. 5, 2001, pp. 2240-2247. doi:10.1128/AEM.67.5.2240-2247.2001

[27]   G. Neumann, Y. Veeranagouda, T. B. Karegoudar, O. Sahin, I. Mausezahl, N. Kabelitz, U. Kappelmeyer and H. J. Heipieper, “Cells of Pseudomonas putida and Enterobacter sp. Adapt to Toxic Organic Compounds by Increasing Their Size,” Extremophiles, Vol. 9, No. 2, 2005, pp. 163-168. doi:10.1007/s00792-005-0431-x

 
 
Top