JSIP  Vol.3 No.2 , May 2012
Non-Fragile Controller Design for 2-D Discrete Uncertain Systems Described by the Roesser Model
Author(s) Amit Dhawan*
ABSTRACT
This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based sufficient condition for the existence of such controllers is established. Finally, a numerical example is provided to illustrate the applicability of the proposed method.

Cite this paper
A. Dhawan, "Non-Fragile Controller Design for 2-D Discrete Uncertain Systems Described by the Roesser Model," Journal of Signal and Information Processing, Vol. 3 No. 2, 2012, pp. 248-251. doi: 10.4236/jsip.2012.32033.
References
[1]   T. Kaczorek, “Two-Dimensional Linear Systems,” Springer-Verlag, Berlin, 1985.

[2]   R. N. Bracewell, “Two-Dimensional Imaging,” Prentice-Hall Signal Processing Series, Prentice-Hall, Englewood Cliffs, 1995.

[3]   W.-S. Lu and A. Antoniou, “Two-Dimensional Digital Filters,” Marcel Dekker, New York, 1992.

[4]   N. K. Bose, “Applied Multidimensional System Theory,” Van Nostrand Reinhold, New York, 1982.

[5]   R. P. Roesser, “A Discrete State-Space Model for Linear Image Processing,” IEEE Transactions on Automatic Control, Vol. 20, No. 1, 1975, pp. 1-10.

[6]   B. D. O. Anderson, P. Agathoklis, E. I. Jury and M. Mansour, “Stability and the Matrix Lypunov Equation for Discrete 2-Dimensional Systems,” IEEE Transactions on Circuits and Systems, Vol. 33, 1986, pp. 261-267. doi:10.1109/TCS.1986.1085912

[7]   H. Kar and V. Singh, “Stability Analysis of 2-D State-Space Digital Filters Using Lyapunov Function: A Caution,” IEEE Transactions on Signal Process, Vol. 45, No. 10, 1997, pp. 2620-2621. doi:10.1109/78.640734

[8]   H. Kar and V. Singh, “Stability Analysis of 1-D and 2-D Fixed-Point State-Space Digital Filters Using Any Combination of Overflow and Quantization Nonlinearities,” IEEE Transactions on Signal Process, Vol. 49, 2001, pp. 1097-1105. doi:10.1109/78.917812

[9]   D. Liu and A. N. Michel, “Stability Analysis of State-Space Realizations for Two-Dimensional Filters with Over-flow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 41, No. 2, 1994, pp. 127-137. doi:10.1109/81.269049

[10]   H. Kar and V. Singh, “Stability Analysis of 2-D State-Space Digital Filters with Overflow Nonlinearities,” IEEE Transactions on Circuits and Systems I, Vol. 47, No. 4, 2000, pp. 598-601. doi:10.1109/81.841865

[11]   V. Singh, “New LMI Condition for the Nonexistence of Overflow Oscillations in 2-D State-Space Digital Filters Using Saturation Arithmetic,” Digital Signal Process, Vol. 17, No. 1, 2007, pp. 345-352. doi:10.1016/j.dsp.2006.01.003

[12]   H. Kar, “Comments on ‘New LMI Condition for the Nonexistence of Overflow Oscillations in 2-D State-Space Digital Filters Using Saturation Arithmetic’,” Digital Signal Process, Vol. 18, No. 2, 2008, pp. 148-150. doi:10.1016/j.dsp.2007.02.001

[13]   C. Du, L. Xie and C. Zhang, “Hoo Control and Robust Stabilization of Two-Dimensional Systems in Roesser Models,” Automatica, Vol. 37, No. 2, 2001, pp. 205-211. doi:10.1016/S0005-1098(00)00155-2

[14]   R. Yang, L. Xie and C. Zhang, “H2 and Mixed H2/Hoo Control of Two-Dimensional Systems in Roesser Model,” Automatica, Vol. 42, No. 9, 2006, pp. 1507-1514. doi:10.1016/j.automatica.2006.04.002

[15]   A. Dhawan and H. Kar, “An LMI Approach to Robust Optimal Guaranteed Cost Control of 2-D Discrete Systems described by the Roesser Model,” Signal Process, Vol. 90, No. 9, 2010, pp. 2648-2654. doi:10.1016/j.sigpro.2010.03.008

[16]   D. Yue and J. Lam, “Non-Fragile Guaranteed Cost Control for Uncertain Descriptor Systems with Time-Varying State and Input Delays,” Optimal Control Applications & Methods, Vol. 26, 2005, pp. 85-105. doi:10.1002/oca.753

[17]   L. H. Keel and S. P. Bhattacharya, “Robust, Fragile or Optimal,” IEEE Transactions on Automatic Control, Vol. 42, No. 8, 1997, pp. 1098-1105. doi:10.1109/9.618239

[18]   W. M. Haddad and J. R. Corrado, “Robust Resilient Dynamic Controllers for Systems with Parameter Uncertainty and Controller Gain Variations,” International Journal of Control, Vol. 73, No. 15, 2000, pp. 1405-1423. doi:10.1080/002071700445424

[19]   C. Lien, W. Cheng, C. Tsai and K. Yu., “Non-Fragile Observer-Based Controls of Linear System via LMI Approach,” Chaos, Solitons and Fractals, Vol. 32, No. 4, 2007, pp. 1530-1537. doi:10.1016/j.chaos.2005.11.092

[20]   S. Xu, J. Lam, G. Yang and J. Wang, “Stabilization and Hoo Control for Uncertain Stochastic Time-Delay Systems via Non-Fragile Control,” Asian Journal of Control, Vol. 8, No. 2, 2006, pp. 197-200. doi:10.1111/j.1934-6093.2006.tb00270.x

[21]   J. H. Park, “Robust Non-Fragile Control for Uncertain Discrete-Delay Large-Scale Systems with a Class of Controller Gain Variations,” Applied Mathematics and Computation, Vol. 149, No.1, 2004, pp. 147-164. doi:10.1016/S0096-3003(02)00962-1

[22]   C. Lien, “Hoo Non-Fragile Observer-Based Controls of Dynamical Systems via LMI Optimization Approach,” Chaos, Solitons and Fractals, Vol. 34, No. 2, 2007, pp. 428-436. doi:10.1016/j.chaos.2006.03.050

[23]   C. Lien, “Non-Fragile Guaranteed Cost Control for Uncertain Neutral Dynamic Systems with Time-Varying Delays in State and Control Input,” Chaos, Solitons and Fractals, Vol. 31, No. 4, 2007, pp. 889-899. doi:10.1016/j.chaos.2005.10.080

[24]   S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, 1994. doi:10.1137/1.9781611970777

[25]   P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, “LMI Control Toolbox—For Use with Matlab,” The MATH Works Inc., Natick, MA, 1995.

 
 
Top