Back
 JSIP  Vol.3 No.2 , May 2012
A New Useful Biometrics Tool Based on 3D Brain Human Geometrical Characterizations
Abstract: Previous clinical research studies consider the existence of differences among normal individual cerebral cortex and show that some features such as cerebral sulci are unique for each individual so that human brains are anatomically different and unique to each individual. In this work, we highlight the idea which consists in using medical data, such as brain MRI images for the purpose of individual identification or verification. In other words, we raise the following question: can one identify individuals using their brain geometry characteristics? Our aim is to validate the feasibility of this new biometrics tool based on human brain characterization. The proposed approach differs from existent biometrics modalities (e.g. fingerprint, hand, etc.) in the sense that brain features cannot be modified by individuals as it is the case when using fake fingerprints, or fake hands. In this work, we consider volumetric Magnetic Resonance Images (MRI) from which brain shapes are extracted using a 3D level-sets segmentation approach. Afterwards, geometrical descriptors are extracted from the 3D brain volume and from a projected version which provide specific features such as the isoperimetric ratio, the cortical surface curvature and the Gyrification index. Evaluations performed on a set of MRI images obtained from (MeDEISA) database show that it is possible to distinguish between individuals using their brain characteristics. Preliminary results are particularly encouraging.
Cite this paper: K. Aloui, A. Naït-Ali and S. Naceur, "A New Useful Biometrics Tool Based on 3D Brain Human Geometrical Characterizations," Journal of Signal and Information Processing, Vol. 3 No. 2, 2012, pp. 198-207. doi: 10.4236/jsip.2012.32027.
References

[1]   W. Welker, “Why Does the Cerebral Cortex Fissure and Fold,” Cerebral Cortex, Vol. 8, 1990, pp. 3-135. doi:10.1007/978-1-4615-3824-0_1

[2]   Muséum D’histoire Naturelle de Marseille, “Le Cerveau Avant la Naissance.” www.museum-marseille.org

[3]   J. Conel, “The Post-Natal Development of the Human Cerebral Cortex,” Harvard University Press, Cambridge, 1939-1967.

[4]   J. Hutsler, W. C. Loftus and M. S. Gazzaniga, “Individual Variation of Cortical Surface Area Asymmetries,” Cerebral Cortex, Vol. 8, No. 1, 1998, pp. 11-17. doi:10.1093/cercor/8.1.11

[5]   J. Dubois, M. Benders, A. Cachia, F. Lazeyras, R. HaVinh Leuchter, S. V. Sizonenko, C. Borradori-Tolsa, J. F. Mangin and P. S. Hüppi, “Mapping the Early Cortical Folding Process in the Preterm Newborn Brain,” Cerebral Cortex, Vol. 18, 2008, pp. 1444-1454. doi:10.1093/cercor/bhm180

[6]   M. Thompson, “Three-Dimensional Statistical Analysis of Sulcal Variability in the Human Brain,” The Journal of Neuroscience, Vol. 16, No. 13, 1996, pp. 4261-4274.

[7]   Medical Database for the Evaluation of Image and Signal Processing (MeDEISA), www.medeisa.net

[8]   T. McInerney and D. Terzopoulos, “Deformable Models in Medical Image Analysis: A Survey,” Medical Image Analysis, Vol. 1, No. 2, 1996, pp. 91-108. doi:10.1016/S1361-8415(96)80007-7

[9]   M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, Vol. 1, No. 1, 1987, pp. 321-331.

[10]   C. Xu, D. Pham and J. Prince, “Image Segmentation Using Deformable Models,” Handbook of Medical Imaging, Vol. 2, 2000, pp. 129-174.

[11]   J. A. Sethian, “Level Set Methods and Fast Marching Methods,” Cambridge University Press, Cambridge, 1996.

[12]   S. K. Warfield, M. Kaus, F. A. Jolesz and R. Kikinis, “Adaptive, Template Moderated, Spatially Varying Statistical Classification,” Medical Image Analysis, Vol. 20, No. 8, 2000, pp. 43-55. doi:10.1016/S1361-8415(00)00003-7

[13]   C. Baillard, et al., “Cooperation between Level Set Techniques and 3D Registration for the Segmentation of Brain Structures,” 15th International Conference on Pattern Recognition, Vol. 1, 2000, pp. 991-994.

[14]   J. S. Suri, S. Singh and L. Reden, “Computer Vision and Pattern Recognition Techniques for 2-D and 3-D MR Cerebral Cortical Segmentation (Part I): A State-of-theArt Review,” Pattern Analysis and Applications, Vol. 5, No.1, 2002, pp. 46-76. doi:10.1007/s100440200005

[15]   A. W. C. Liew and H. Yan, “Current Methods in the Automatic Tissue Segmentation of 3D Magnetic Resonance Brain Images,” Current Medical Imaging Reviews, Vol. 2, 2006, pp. 91-103. doi:10.2174/157340506775541604

[16]   S. Ho, E. Bullitt and G. Gerig, “Level Set Evolution with Region Competition: Automatic 3-D Segmentation of Brain Tumors,” 16th International Conference on Pattern Recognition, Vol. 20, No. 8, 2002, pp. 532-535.

[17]   A. E. Lefohn, J. Cates and R. Whitaker, “Interactive, GPU-Based Level Sets for 3D Brain Tumor Segmentation,” Medical Image Computing and Computer Assisted Intervention, 2003, pp. 564-572.

[18]   P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, 1990, pp. 629-639. doi:10.1109/34.56205

[19]   J. P. Serra, “Image Analysis and Mathematical Morphology,” Academic Press Inc., Burlington, 1982.

[20]   V. Caselles, R. Kimmel and G. Sapiro, “Geodesic Active Contours,” International Journal of Computer Vision, Vol. 22, No. 1, 1997, pp. 61-97. doi:10.1023/A:1007979827043

[21]   R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape Modeling with Front Propagation: A Level Set Approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, 1995, pp. 158-174. doi:10.1109/34.368173

[22]   S. Osher and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, Vol. 79, No. 1, 1988, pp. 12-49. doi:10.1016/0021-9991(88)90002-2

[23]   A. Cachia, “Modèles Statistiques Morphometriques et Structurels du Cortex Pour L’étude du Développement Cérébral,” Thèse en Doctorat Traitement du Signal et de L’image, L’ecole Nationale Supérieure de Télécommunications, 2003.

[24]   L. D. Griffin, “The Intrinsic Geometry of the Cerebral Cortex,” Journal of Theoretical Biology, Vol. 166, No. 3, 1994, pp. 261-273. doi:10.1006/jtbi.1994.1024

[25]   E. Armstrong, A. Schleicher, H. Omran, M. Curtis and K. Zilles, “The Ontogeny of Human Gyrification,” C Cerebral Cortex, Vol. 5, No. 1, 1995, pp. 56-63.

[26]   Ph. G. Batchelor, A. D. C. Smith, D. L. G. Hill, D. J. Hawkes, T. C. S. Cox and A. F. Dean, “Measures of Folding Applied to the Development of the Human Fetal Brain,” IEEE Transactions on Medical Imaging, Vol. 21, No. 8, 2002. doi:10.1109/TMI.2002.803108

[27]   R. Toro, M. Perron III, B. Pike, L. Richer, S. Veillette, Z. Pausova and T. Paus, “Brain Size and Folding of the Human Cerebral Cortex,” Cerebral Cortex, Vol. 18, No. 10, 2008, pp. 2352-2357. doi:10.1093/cercor/bhm261

[28]   D. Tosun, et al., “Use of 3-D Cortical Morphometry for Mapping Increased Cortical Gyrification and Complexity in Williams Syndrome,” 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, April 2006, No. 6-9, pp. 1172-1175.

[29]   D. Tosun, et al., “Cerebral Cortical Gyrification: A Preliminary Investigation in Temporal Lobe Epilepsy,” Epilepsia Journal, Vol. 48, No. 2, 2007, pp. 211-219.

[30]   E. Luders, et al., “A Curvature-Based Approach to Estimate Local Gyrification on the Cortical Surface,” Neuro Image, Vol. 29, No. 4, 2006, pp. 1224-1230. doi:10.1016/j.neuroimage.2005.08.049

[31]   S. Osher and R. P. Fedkiw, “Level Set Methods and Dynamic Implicit Surfaces,” Springer, New York, 2003.

[32]   E. Aaron, J. Lefohn, M. Kniss, D. C. Hansen and T. R. Whitaker, “A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of Level Sets,” IEEE Transaction on Visualization and Computer Graphics, Vol. 10, No. 4, 2004, pp. 422-433.

 
 
Top