OJE  Vol.2 No.2 , May 2012
The effect of the feedback cycle between the soil organic carbon and the soil hydrologic and thermal dynamics
Abstract: Biogeochemical feedback processes between soil organic carbon (SOC) in high-latitude organic soils and climate change is of great concern for projecting future climate. More accurate models of the SOC stock and its dynamics in organic soil are of increasing importance. As a first step toward creating a soil model that accurately represents SOC dynamics, we have created the Physical and Biogeochemical Soil Dynamics Model (PB-SDM) that couples a land surface model with a SOC dynamics model to simulate the feedback cycle of SOC accumulation and thermal hydrological dynamics of high-latitude soils. The model successfully simulated soil temperatures for observed data from a boreal forest near Fairbanks, and 2000 year simulations indicated that the effect of the feedback cycle of SOC accumulation on soil thickness would result in a significant differences in the amount of SOC.
Cite this paper: Mori, K. , Ise, T. , Kondo, M. , Kim, Y. and Enomoto, H. (2012) The effect of the feedback cycle between the soil organic carbon and the soil hydrologic and thermal dynamics. Open Journal of Ecology, 2, 90-95. doi: 10.4236/oje.2012.22011.

[1]   Apps, M.J., Kurz, W.A., Luxmoore, R.J., Nilsson, L.O., Sedjo, R.A., Schmidt, R., Simpson, L.G. and Vinson, T.S. (1993) Boreal forests and tundra. Water Air and Soil Pollution, 70, 39-53. doi:10.1007/BF01104987

[2]   Gorham, E. (1991) Northern peatlands: Role in the carbon cycle and probably responses to climatic warming. Ecological Applications, 1, 182-195. doi:10.2307/1941811

[3]   Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. and Zimov, S. (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Article ID: GB2023. doi:10.1029/2008GB003327

[4]   Jobbágy, B.H. and Jackson, R.B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423- 436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

[5]   Dorrepaal, E., Toet, S., Van Logtestjin, R.S.P., Swart, E., Van de Weg, M.J., Callaghan, T.V. and Aerts, R. (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616-619. doi:10.1038/nature08216

[6]   Ise, T., Dunn, A.L., Wofsy, S.C. and Moorcroft, P.R. (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1, 763-766. doi:10.1038/ngeo331

[7]   Flanagan, L.B. and Syed, K.H. (2011) Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Global Change Biology, 17, 2271-2287. doi:10.1111/j.1365-2486.2010.02378.x

[8]   O’donnell, J.A., Jorgenson, M.T., Harden, J.W., Mcguire, A.D., Kanevskiy, M.Z. and Wickland, K.P. (2011) The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems, 15, 213-219. doi:10.1007/s10021-011-9504-0

[9]   Koven, C., Friedligstein, P., Ciais, P., Khvorostyanov, D., Krinner, G. and Tarnocai, C. (2009) On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophysical Research Letters, 36, Article ID: L21501. doi:10.1029/2009GL040150

[10]   Lawrence, D.M. and Slater, A.G. (2008) Incorporating organic soil into a global climate model. Climate Dynamics, 30, 145-160. doi:10.1007/s00382-007-0278-1

[11]   Lawrence, D.M., Slater, A.G., Romanovsky, V.E. and Ni-colsky, D.J. (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Ge physical Research, 113, Article ID: F02011. doi:10.1029/2007JF000883

[12]   Yi, S., McGuire, A.D., Harden, J., Kasischke, E., Manies, K., Hinzman, L., Liljedahl, A., Randerson, J., Liu, H., Romanovsky, V., Marchenko, S. and Kim, Y. (2009) In- teractions between soil thermal and hydrological dynamo- ics in the response of Alaska ecosystems to fire distur- bance. Journal of Geophysical Research, 113, Article ID: G02015. doi:10.1029/2008JG000841

[13]   Livneh, B., Xia, Y., Mitchell, K.E., Ek, M.B and Lettenmaier, E.P. (2010) Noah LSM snow model diagnostics and enhancements. Journal of Hydrometeor, 11, 721-738. doi:10.1175/2009JHM1174.1

[14]   Koren, V., Schaake, J., Mitchell, K., Duan, Q.Y., Chen, F. and Baker, J.M. (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research, 104, 19, 569-19,585. doi:10.1029/1999JD900232

[15]   Mitchell, K. (2005) The community Noah land surface model (LSM)—User’s guide public release version 2.7.1.

[16]   Sugiura, K., Suzuki, R., Nakai, T., Busey, B., Hinzman, L., Park, H., Kim, Y., Nagai, S., Saito, K., Cherry, J., Ito, A., Ohata, T. and Walsh, J. (2011) Supersite in Alaska under JICS. Japan Agency for Marine-Earth Science and Technology Report of Research and Development, 12, 61-69. doi:10.5918/jamstecr.12.61

[17]   Sato, H., Itoh, A. and Kohyama, T. (2007) SEIB-DGVM: A new dynamic global vegetation model using a spatially explicit individual-based approach. Ecological Modeling, 200, 279-307. doi:10.1016/j.ecolmodel.2006.09.006

[18]   O’donnell, J.A., Romanovsky, V.E., Harden, J.W. and McGuire, A.D. (2009) The effect of moisture content on the thermal conductivity of moss and organic soil hori- zons from black spruce ecosystems in interior Alaska. Soil Science, 174, 646-651. doi:10.1097/SS.0b013e3181c4a7f8

[19]   Zhuang, Q., Romanovsky, V.E. and McGuire, A.D. (2001) Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics. Journal of Geophysical Research, 106, 33,649-33,670. doi:10.1029/2001JD900151

[20]   Hollingsworth, T.N., Schuur, E.A.G., Chapin, F.S. III and Walker, M.D. (2008) Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems. Ecosystems, 11, 629-642. doi:10.1007/s10021-008-9147-y

[21]   Wickland, K.P., Neff, J.C. and Harden, J.W. (2010) The role of soil drainage class in carbon dioxide exchange and decomposition in boreal black spruce (Picea mariana) forest stands. Canadian Journal of Forest Research, 40, 2123-2134. doi:10.1139/X10-163