[1] Giller, K.E., Neare, M.H., Lavelle, P., Izac, A.M.N. and Swift, M.J. (1997) Agricultural intensification, soil biodiversity and agrosystem function. Applied Soil Ecology, 6, 3-16. doi:10.1016/S0929-1393(96)00149-7
[2] Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van Der Putten, W.H. and Wall, D.H. (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. doi:10.1126/science.1094875
[3] Bongers, T. and Bongers, M. (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251. doi:10.1016/S0929-1393(98)00123-1
[4] Yeates, G.W., Bongers, T., De Goede, R.G.M., Freckman, D. and Georgieva, S.S. (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
[5] Wall, D.H. and Virginia, R.A. (1999) Controls on soil biodiversity: Insight from extreme environment. Applied Soil Ecology, 13, 137-150. doi:10.1016/S0929-1393(99)00029-3
[6] Hogg, I.D., Cary, S.C., Convey, P., Newsham, K.K., O’Donnell, A.G., Adams, B.J., Aislabie, J., Frati, F., Stevens, M.I. and Wall, D.H. (2006) Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor? Soil Biology and Biochemistry, 38, 3035-3040. doi:10.1016/j.soilbio.2006.04.026.
[7] Whitford, W.G. (2002) Ecology of desert systems. Academic Press, New York, London.
[8] Pen-Mouratov, S., He, X.L. and Steinberger, Y. (2004) Spatial distribution and trophic diversity of nematode populations under Acacia raddiana along a temperature gradient in the Negev Desert ecosystem. Journal of Arid En- vironments, 56, 339-355. doi:10.1016/S0140-1963(03)00058-2
[9] Ettema, C.H. and Bongers, T. (1993) Characterization of nematode colonization and succession in disturbed soil using the maturity index. Biology and Fertility of Soils, 16, 79-85. doi:10.1007/BF00369407
[10] Elliott, E.T. (1997) Rationale for developing bioindicators of soil health. In: Pankhurst, C., Doube, B.M. and Gupta, V.V.S.R., Eds., Biological Indicators of Soil Health, Centre for Agricultural Bioscience International, New York, 49-78.
[11] Ferris, H., Bongers, T. and De Goede, R.G.M. (2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29. doi:10.1016/S0929-1393(01)00152-4
[12] Chen, X.Y., Daniell, T.J., Neilson, R., O'Flaherty, V. and Griffiths, B.S. (2010) A comparison of molecular methods for monitoring soil nematodes and their use as biological indicators. European Journal of Soil Biology, 46, 319-324. doi:10.1016/j.ejsobi.2010.05.002
[13] Keith, A.M., Boots, B., Hazard, C., Niechoj, R., Arroyo, J., Bending, G.D., Bolger, T., Breen, J., Clipson, N., Doohan, F.M., Griffin, C.T., Schmidt, O. (2011) Cross-taxa congruence, indicators and environmental gradients in soils under agricultural and extensive land management. Euro- pean Journal of Soil Biology, 49, 55-62.
[14] Gray, S.B., Classen, A.T., Kardol, P., Yermakov, Z. and Miller, R.M. (2011) Multiple climate change factors interact to alter soil microbial community structure in an old-field ecosystem. Soil Science Society of America Journal, 75, 2217-2226. doi:10.2136/sssaj2011.0135
[15] Kardol, P., Cregger, M.A., Campany, C.E. and Classen, A.T. (2010) Soil ecosystem functioning under climate change: Plant species and community effects. Ecology, 91, 767- 781. doi:10.1890/09-0135.1
[16] Fleischer, A. and Sternberg, M. (2006) The economic impact of global climate change on Mediterranean rangeland ecosystems: A space-for-time approach. Ecological Economics, 59, 287-295. doi:10.1016/j.ecolecon.2005.10.016
[17] Holzapfel, C., Tielborger, K., Parag, H.A., Kigel, J. and Sternberg, M. (2006) Annual plant-shrub interactions along an aridity gradient. Basic Applied Ecology, 7, 268-279. doi:10.1016/j.baae.2005.08.003
[18] Dan, J., Yaalon, D.H., Koyumdji, H., Raz, Z. (1972) The soil association map of Israel (1:1,000,000). Israel Journal of Earth Sciences, 2, 29-49.
[19] Evenari, M.E., Shanan, L. and Tadmor, W. (1982) The Negev: The challenge of a desert. Harvard University Press, Cambridge.
[20] Black, C.A. (1965) Methods of soil analysis: Part 1. Physical and mineralogical properties. American Society of Agronomy, Madison.
[21] Oren, A. and Steinberger, Y. (2008) Catabolic profiles of soil fungal communities along a geographic climatic gradient in Israel. Soil Biology and Biochemistry, 40, 2578- 2587. doi:10.1016/j.soilbio.2008.05.024
[22] Rowell, D.L. (1994) Soil science: Methods and applications. Longman Group UK Ltd., London.
[23] Cairns, E.J. (1960) Methods in nematology. In: Sasser, J.N. and Jenkins, W.R., Eds., Nematology, Fundamentals and Recent Advances with Emphasis on plant Parasitic and Soil Forms. University of North Carolina Press, Cha- pel Hill, 33-84.
[24] Steinberger, Y. and Sarig, S. (1993) Response by soil nematode populations in the soil microbial biomass to a rain episode in the hot, dry Negev Desert. Biology and Fertility of Soils, 16, 188-192. doi:10.1007/BF00361406
[25] Bongers, T. (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19. doi:10.1007/BF00324627
[26] Hendrix, P.F., Parmelee, R.W., Crossley, D.A., Jr., Coleman, D.C., Odum, E.P. Groffman, P.M. (1986) Detritus food webs in conventional and no-tillage agro-ecosystems. Bioscience, 36, 374-380. doi:10.2307/1310259
[27] Twinn, D.C. (1974) Biology of plant litter decomposition. Academic Press, London.
[28] Wasilewska, L. (1994) The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia, 38, 1-11.
[29] Steinberger, Y., Liang, W., Savkina, E., Mesh, T., Barness, G. (2001) Nematode community composition and diversity associated with a topoclimatic transect in a rain shadow desert. European Journal of Soil Biology, 37, 315-320. doi:10.1016/S1164-5563(01)01107-4
[30] Pen-Mouratov, S., Rakhimbaev, M., Steinberger, Y. (2003) Seasonal and spatial variation in nematode communities in the Negev Desert ecosystem. Journal of Nematology, 35, 157-167.
[31] Heip, C., Herman, P.M.J. and Soetaert, K. (1988) Data processing, evaluation and analysis. In: Higgins, R.P. and Thiel, H., Eds., Introduction to the Study of Meiofauna, Smithsonian Institution Press, Washington DC, 197-231.
[32] Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication. University of Illinois Press, Urbana.
[33] Pen-Mouratov, S., Barness, G. and Steinberger, Y. (2008) Effect of desert plant ecophysiological adaptation on soil nematode communities. European Journal of Soil Biology, 44, 298-308. doi:10.1016/j.ejsobi.2008.03.005
[34] Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 668. doi:10.1038/163688a0
[35] Kardol, P., Reynolds, W.N., Norby, R.J. and Classen, A.T. (2011) Climate change effects on soil microarthropod abun- dance and community structure. Applied Soil Ecology, 47, 37-44. doi:10.1016/j.apsoil.2010.11.001
[36] Neher, D.A., Wu, J., Barbercheck, M.E. and Anas, O. (2005) Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30, 47- 64. doi:10.1016/j.apsoil.2005.01.002
[37] Anderson, J.P.E. and Domsch, K.H. (1978) Physiological method for quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221. doi:10.1016/0038-0717(78)90099-8
[38] Freckman, D.W., Whitford, W.G. and Steinberger, Y. (1987) Effect of irrigation on nematode population dynamics and activity in desert soils. Biology and Fertility of Soils, 3, 3-10. doi:10.1007/BF00260571
[39] Berg, N. and Steinberger, Y. (2008) Role of perennial plants in determining the activity of the microbial community in the Negev Desert ecosystem. Soil Biology and Biochemistry, 40, 2686-2695. doi:10.1016/j.soilbio.2008.07.019
[40] Kandji, S.T., Ogol, C.K.P.O. and Albrecht, A. (2001) Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18, 143-157. doi:10.1016/S0929-1393(01)00157-3
[41] Pen-Mouratov, S., Hu, C., Hindin, E. and Steinberger, Y. (2011) Soil microbial activity and a free-living nematode community in the playa and in the sandy biological crust of the Negev Desert. Biology and Fertility of Soils, 47, 363-375. doi:10.1007/s00374-011-0540-x
[42] Xie, G.H. and Steinberger, Y. (2001) Temporal patterns of C and N under shrub canopy in a loessial soil desert ecosystem. Soil Biology and Biochemistry, 33, 1371-1379. doi:10.1016/S0038-0717(01)00042-6
[43] Frey, S.D., Elliott, E.T. and Paustian, K. (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 31, 573-585. doi:10.1016/S0038-0717(98)00161-8
[44] Klich, M.A. (2002) Biogeography of Aspergillus species in soil and litter. Mycologia, 94, 21-27. doi:10.2307/3761842
[45] Robinson, C.H., Dighton, J., Frankland, J.C. and Roberts, J.D. (1994) Fungal communities on decaying wheat-straw of different resource qualities. Soil Biology and Biochemistry, 26, 1053-1058. doi:10.1016/0038-0717(94)90120-1
[46] Chen, J. and Ferris, H. (2000) Growth and nitrogen mineralization of selected fungi and fungal-feeding nematodes on sand amended with organic matter. Plant and Soil, 218, 91-101. doi:10.1023/A:1014914827776
[47] Duyck, P.F., Dortel, E., Tixier, P., Vinatier, F., Loubana, P.M., Chabrier, C. and Quénéhervé, P. (2012) Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biology and Biochemistry, 44, 49-55. doi:10.1016/j.soilbio.2011.09.014
[48] Holland, E.A. and Coleman, D.C. (1987) Litter placement effect on microbial and organic matter dynamics in an agro- ecosystem. Ecology, 68, 425-433. doi:10.2307/1939274
[49] Neher, D.A., Weicht, T.R., Savin, M., Gorres, J.H. and Ama- dor, J.A. (1999) Grazing in a porous environment. 2. Nematode community structure. Plant and Soil, 212, 85-99. doi:10.1023/A:1004665120360
[50] De Goede, R.G.M., Verschoor, B.C. and Georgieva, S.S. (1993) Nematode distribution, trophic structure and biomass in a primary succession of blown-out areas in a drift sand landscape. Fundamental and Applied Nematology, 16, 525-538.
[51] Wright, C.J. and Coleman, D.C. (2002) Responses of soil microbial biomass, nematode trophic groups, N-mineralization, and litter decomposition to disturbance events in the southern Appalachians. Soil Biology and Biochemistry, 34, 13-25. doi:10.1016/S0038-0717(01)00128-6
[52] García-álvarez, A., Arias, M., Diez-Rojo, M.A. and Bello, A. (2004) Effect of agricultural management on soil ne- matode trophic structure in a Mediterranean cereal system. Applied Soil Ecology, 27, 197-210. doi:10.1016/j.apsoil.2004.06.002
[53] Sternberg, M., Holzapfel, C., Tielb?rger, K., Sarah, P., Kigel, J., Lavee, H., Fleischer, A., Jeltsch, F. and K?chy, M. (2011) The use and misuse of climatic gradients for evaluating climate impact on dryland ecosystems—An example for the solution of conceptual problems. In: Blanco, J. and Kheradmand, H., Eds., Climate Change— Geophysical Foundations and Ecological Effects, InTech, Rijeka, 361-374.
[54] Goldreich, Y. (1998) The climate of Israel—Observation, research and application. Bar-Ilan University Press, Ramat- Gan.