[1] M. H. Haroun, “Feasibility of in-Situ Decontamination of Heavy Metals by Electroremediation of Offshore Muds,” Ph.D. Dissertation, University of Southern California, Los Angeles, 2009.
[2] S. Pamukcu, “Electrochemical Transport and Transformations,” In: Reddy and Camaselle, Eds., Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, John Wiley & Sons, New York, 2009, pp. 29-65.
[3] J. K. Wittle, D. G. Hill and G. V. Chilingar, “Direct Current Electrical Enhanced Oil Recovery in Heavy-Oil Reservoirs to Improve Recovery, Reduce Water Cut, and Reduce H2S Production While Increasing API Gravity,” SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, 29 March-2 April 2008, 2008, pp. 1-19.
[4] J. K. Wittle, D. G. Hill and G. V. Chilingar, “Direct Electric Current Oil Recovery (EEOR)—A New Approach to Enhancing Oil Production,” Energy Sources, Part A (Recovery, Utilization, and Environmental Effects), Vol. 33, No. 9, 2011, pp. 805-822.
[5] J. K. Wittle and S. Pamukcu, “Electrokinetic Treatment of Contaminated Soils, Sludges and Lagoons,” US Department of Energy, Argonne National Laboratories, Argonne, II, DOE/CH-9206, No. 02112406, 1993, p. 45.
[6] R. F. Probstein and R. E. Hicks, “Removal of Contaminants from Soils by Electric Fields,” Science, Vol. 260, 1993, pp. 498-503. doi:10.1126/science.260.5107.498