WJNS  Vol.2 No.2 , May 2012
Adult and neonatal astrocytes exhibit diverse gene expression profiles in response to beta amyloid ex vivo
ABSTRACT
Astrocytes are implicated in the neuropathology of Alzheimer’s disease (AD) by clustering with other activated inflammatory cells at the sites of amyloid beta (Aβ) deposits formed in the cortex and hippocampus. Astrocytes are known to contribute to the clearance of Aβ in the AD brain. Also, adult but not neonatal mouse astrocytes are able to clear Aβ deposits from the tissue sections of transgenic AD mice and human brain ex vivo. Because these findings suggest that cultured neonatal astrocytes may not represent a relevant cell for modeling the function of astrocytes in neurodegenerative diseases, we studied whether neonatal and adult astrocytes show different responses in gene expression when exposed to brain sections burdened by deposits of human Aβ. Whole genome microbarrays demonstrated greater alteration of gene expression in adult astrocytes than in neonatal astrocytes. When exposed to Aβ burdened brain sections adult but not neonatal astrocytes up-regulated genes related to peptidase (such as MMP13, MMP12, Phex, Htra1), scavenger receptor (Scara5, Enpp2) and glutathioine transferase (Gsta1, Gsta2, Gclm) activity, suggesting increased ability to degrade and endocytose Aβ peptides and protect against oxidative bursts. Quantitative RT-PCR analysis confirmed the significant alteration in gene expression of key peptidases, scavenger receptors and cholesterol synthesis. Our data suggest that adult astrocytes in culture are more sensitive to disease-relevant stress showing more extensive genetic response compared to neonatal astrocytes. In addition, the identified peptidases and scavenger receptors which increase expression selectively in adult astrocytes suggest their major role in astrocyte-mediated clearance of Aβ deposits in AD.

Cite this paper
Kurronen, A. , Pihlaja, R. , Pollari, E. , Kanninen, K. , Storvik, M. , Wong, G. , Koistinaho, M. and Koistinaho, J. (2012) Adult and neonatal astrocytes exhibit diverse gene expression profiles in response to beta amyloid ex vivo. World Journal of Neuroscience, 2, 57-67. doi: 10.4236/wjns.2012.22009.
References
[1]   Cole, S.L. and Vassar, R. (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Molecular Neurodegeneration, 2, 22. doi:10.1186/1750-1326-2-22

[2]   Giannakopoulos, P., Herrmann, F.R., Bussière, T., Bouras, C., K?vari, E., Perl, D.P., Morrison, J.H., Gold, G. and Hof, P.R. (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 60, 1495-500.

[3]   Delaère, P., Duyckaerts, C., Masters, C., Beyreuther, K., Piette, F. and Hauw, J.J. (1990) Large amounts of neocortical beta A4 deposits without neuritic plaques nor tangles in a psychometrically assessed, non-demented person. Neuroscience Letters, 116, 87-93. doi:10.1016/0304-3940(90)90391-L

[4]   Dickson, D.W., Crystal, H.A., Mattiace, L.A., Masur, D.M., Blau, A.D., Davies, P., Yen, S.H. and Aronson, M.K. (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging, 13, 179-189. doi:10.1016/0197-4580(92)90027-U

[5]   Davis, D.G., Schmitt, F.A., Wekstein, D.R. and Markesbery, W.R. (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology & Experimental Neurology, 58, 376-388.

[6]   Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M. and Ashe, K.H. (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352-357. doi:10.1038/nature04533

[7]   Fukumoto, H., Tokuda, T., Kasai, T., Ishigami, N., Hidaka, H., Kondo, M., Allsop, D. and Nakagawa, M. (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB Journal, 24, 2716-2726. doi:10.1096/fj.09-150359

[8]   Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B.P. and LaFerla, F.M. (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging, 24, 1063-1070. doi:10.1016/j.neurobiolaging.2003.08.012

[9]   Oddo, S., Billings, L., Kesslak, J.P., Cribbs, D.H. and LaFerla, F.M. (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 43, 321-332.

[10]   Funato, H., Yoshimura, M., Yamazaki, T., Saido, T.C., Ito, Y., Yokofujita, J., Okeda, R. and Ihara, Y. (1998) Astrocytes containing amyloid beta-protein (Abeta)- positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain. American Journal of Pathology, 152, 983-992.

[11]   Nagele, R.G., D’Andrea, M.R., Lee, H., Venkataraman, V. and Wang, H.Y. (2003) Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer’s disease brains. Brain Research, 971, 197-209. doi:10.1016/S0006-8993(03)02361-8

[12]   Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R. and Paul, S.M. (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nature Medicine, 10, 719-726. doi:10.1038/nm1058

[13]   Matsunaga, W., Shirokawa, T. and Isobe, K. (2003) Specific uptake of Abeta1-40 in rat brain occurs in astrocyte, but not in microglia. Neuroscience Letters, 342, 129-131. doi:10.1016/S0304-3940(03)00240-4

[14]   Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-b in vitro and in situ. Nature Medicine, 9, 453-457. doi:10.1038/nm838

[15]   Pihlaja, R., Koistinaho, J., Malm, T., Sikkil?, H., Vainio, S. and Koistinaho, M. (2008) Transplanted astrocytes internalize deposited beta-amyloid peptides in a transgenic mouse model of Alzheimer’s disease. Glia, 56, 154-163. doi:10.1002/glia.20599

[16]   Freeman, M.R. (2010) Specification and morphogenesis of astrocytes. Science, 330, 774-778. doi:10.1126/science.1190928

[17]   Lund, R.D. and Lund, J.S. (1972) Development of synaptic patterns in the superior colliculus of the rat. Brain Research, 42, 1-20. doi:10.1016/0006-8993(72)90038-8

[18]   Warton, S.S. and McCart, R. (1989) Synaptogenesis in the stratum griseum superficiale of the rat superior colliculus. Synapse, 3, 136-148.

[19]   Ullian, E.M., Christopherson, K.S. and Barres, B.A. (2004) Role for glia in synaptogenesis. Glia, 47, 209-216. doi:10.1002/glia.20082

[20]   Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimune, Y. (1997) “Green mice” as a source of ubiquitous green cells. FEBS Letters, 407, 313-319. doi:10.1016/S0014-5793(97)00313-X

[21]   Jankowsky, J.L., Fadale, D.J., Anderson, J., Xu, G.M., Gonzales, V., Jenkins, N.A., Copeland, N.G., Lee, M.K., Younkin, L.H., Wagner, S.L., Younkin, S.G. and Borchelt, D.R. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human Molecular Genetics, 13, 159-170. doi:10.1093/hmg/ddh019

[22]   Kallio, M.A., Tuimala, J.T., Hupponen, T., Klemel?, P., Gentile, M., Scheinin, I., Koski, M., K?ki, J. and Korpelainen, E.I. (2011) Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics, 12, 507. doi:10.1186/1471-2164-12-507

[23]   Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U. and Speed, T.P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249-264. doi:10.1093/biostatistics/4.2.249

[24]   Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504. doi:10.1101/gr.1239303

[25]   Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448-3449. doi:10.1093/bioinformatics/bti551

[26]   Hu, Z.L., Bao, J. and Reecy, J.M. (2008) CateGOrizer: A web-based program to batch analyzegene ontology classification categories. Online Journal of Bioinformatics, 9, 108-112.

[27]   Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A., Thompson, W.L. and Barres, B.A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. Journal of Neuroscience, 28, 264-278. doi:10.1523/JNEUROSCI.4178-07.2008

[28]   Paresce, D.M., Ghosh, R.N. and Maxfield, F.R. (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron, 17, 553-565. doi:10.1016/S0896-6273(00)80187-7

[29]   Jiang, Y., Oliver, P., Davies, K.E. and Platt, N. (2006) Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. Journal of Biological Chemistry, 281, 11834-11845. doi:10.1074/jbc.M507599200

[30]   Li, J.Y., Paragas, N., Ned, R.M., Qiu, A., Viltard, M., Leete, T., Drexler, I.R., Chen, X., Sanna-Cherchi, S., Mohammed, F., Williams, D., Lin, C.S., Schmidt-Ott, K.M., Andrews, N.C. and Barasch, J. (2009) Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Developmental Cell, 16, 35-46. doi:10.1016/j.devcel.2008.12.002

[31]   Bertram, L., Lill, C.M. and Tanzi, R.E. (2010) The genetics of Alzheimer disease: Back to the future. Neuron, 68, 270-281. doi:10.1016/j.neuron.2010.10.013

[32]   Rebeck, G.W., Reiter, J.S., Strickland, D.K., Hyman, B.T. (1993) Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron, 11, 575-580. doi:10.1016/0896-6273(93)90070-8

[33]   Saunders, A.M., Strittmatter, W.J., Schmechel, D., George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., Rosi, B.L. and Gusella, (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467-1472.

[34]   Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S. and Roses, A.D. (1993) Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 1977-1981.

[35]   Shirotani, K., Tsubuki, S., Iwata, N., Takaki, Y., Harigaya, W., Maruyama, K., Kiryu-Seo, S., Kiyama, H., Iwata, H., Tomita, T., Iwatsubo, T. and Saido, T.C. (2001) Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. Journal of Biological Chemistry, 276, 21895-218901. doi:10.1074/jbc.M008511200

[36]   Grau, S., Baldi, A., Bussani, R., Tian, X., Stefanescu, R., Przybylski, M., Richards, P., Jones, S.A., Shridhar, V., Clausen, T. and Ehrmann, M. (2005) Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proceedings of the National Academy of Sciences of the United States of America, 102, 6021-6026. doi:10.1073/pnas.0501823102

[37]   Chen, Y., Vartiainen, N.E., Ying, W., Chan, P.H., Koistinaho, J. and Swanson, R.A. (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. Journal of Neurochemistry, 77, 1601-1610. doi:10.1046/j.1471-4159.2001.00374.x

[38]   De Strooper, B. (2010) Proteases and proteolysis in Alzheimer disease: A multi-factorial view on the disease process. Physiological Reviews, 90, 465-494. doi:10.1152/physrev.00023.2009

[39]   Alarcón, R., Fuenzalida, C., Santibá?ez, M. and von Bernhardi, R. (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. Journal of Biological Chemistry, 280, 30406-30415. doi:10.1074/jbc.M414686200

[40]   Allaman, I., Gavillet, M., Bélanger, M., Laroche, T., Viertl, D., Lashuel, H.A. and Magistretti, P.J. (2010) Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: Impact on neuronal viability. Journal of Neuroscience, 30, 3326-3338.

[41]   Nakamura, K., Ohya, W., Funakoshi, H., Sakaguchi, G., Kato, A., Takeda, M., Kudo, T. and Nakamura, T. (2006) Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer’s disease. Journal of Neuroscience Research, 84, 874-890. doi:10.1002/jnr.20992

[42]   Baruch-Suchodolsky, R. and Fischer, B. (2008) Soluble amyloid-β(1-28) copper(I)/copper(II)/iron(II) complexes are potent antioxidants in cell-free systems. Biochemistry, 47, 7796-7806. doi:10.1021/bi800114g

[43]   Faller, P., Hureau, C. (2009) Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide. Dalton Transactions, 21, 1080-1094. doi:10.1039/B813398K

[44]   Grundke-Iqbal, I., Fleming, J., Tung, Y.C., Lassmann, H., Iqbal, K. and Joshi, J.G. (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathologica, 81, 105-110. doi:10.1007/BF00334497

[45]   Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., Markesbery, W.R. (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158, 47-52. doi:10.1016/S0022-510X(98)00092-6

[46]   Yan, P., Hu, X., Song, H., Yin, K., Bateman, R.J., Cirrito, J.R., Xiao, Q., Hsu, F.F., Turk, J.W., Xu, J., Hsu, C.Y., Holtzman, D.M. and Lee, J.M. (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. Journal of Biological Chemistry, 281, 24566-22574. doi:10.1074/jbc.M602440200

[47]   Heeren, J., Grewal, T., Laatsch, A., Becker, N., Rinninger, F., Rye, K.A. and Beisiegel, U. (2004) Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. Journal of Biological Chemistry, 279, 55483-55492. doi:10.1074/jbc.M409324200

[48]   Canepa, E., Borghi, R., Vi?a, J., Traverso, N., Gambini, J., Domenicotti, C., Marinari, U.M., Poli, G., Pronzato, M.A. and Ricciarelli, R. (2011) Cholesterol and amyloid-β: Evidence for a cross-talk between astrocytes and neuronal cells. Journal of Alzheimer’s Disease, 25, 645- 653. doi:10.3233/JAD-2011-110053

[49]   Gong, J.S., Morita, S.Y., Kobayashi, M., Handa, T., Fujita, S.C., Yanagisawa, K. and Michikawa, M. (2007) Novel action of apolipoprotein E (ApoE): ApoE isoform specifically inhibits lipid-particle-mediated cholesterol release from neurons. Molecular Neurodegeneration, 2, 9. doi:10.1186/1750-1326-2-9

[50]   Ito, J., Zhang, L.Y., Asai, M. and Yokoyama, S. (1999) Differential generation of high-density lipoprotein by endogenous and exogenous apolipoproteins in cultured fetal rat astrocytes. Journal of Neurochemistry, 72, 2362- 2369.

[51]   Krimbou, L., Denis, M., Haidar, B., Carrier, M., Marcil, M. and Genest, J. Jr. (2004) Molecular interactions between apoE and ABCA1: Impact on apoE lipidation. Journal of Lipid Research, 45, 839-848. doi:10.1194/jlr.M300418-JLR200

[52]   Vaya, J. and Schipper, H.M. (2007) Oxysterols, cholesterol homeostasis, and Alzheimer disease. Journal of Neurochemistry, 102, 1727-1737. doi:10.1111/j.1471-4159.2007.04689.x

[53]   Heverin, M., Bogdanovic, N., Lütjohann, D., Bayer, T., Pikuleva, I., Bretillon, L., Diczfalusy, U., Winblad, B. and Bj?rkhem, I. (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. Journal of Lipid Research, 45, 186-193. doi:10.1194/jlr.M300320-JLR200

[54]   Leoni, V. and Caccia, C. (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chemistry and Physics of Lipids, 164, 515-524. doi:10.1016/j.chemphyslip.2011.04.002

[55]   Cartagena, C.M., Burns, M.P. and Rebeck, G.W. (2010) 24S-hydroxycholesterol effects on lipid metabolism genes are modeled in traumatic brain injury. Brain Research, 1319, 1-12. doi:10.1016/j.brainres.2009.12.080

 
 
Top