The Bezier Control Points Method for Solving Delay Differential Equation

Show more

References

[1] G. Adomian and R. Rach, “Nonlinear Stochastic Differential Delay Equation,” Journal of Mathematical Analysis and Applications, Vol. 91, No. 1, 1983, pp. 94-101.
doi:10.1016/0022-247X(83)90094-X

[2] F. M. Asl and A. G. Ulsoy, “Analysis of a System of Linear Delay Differential Equations,” Journal of Dynamic Systems, Measurement and Control, Vol. 125, No. 2, 2003, pp. 215-223. doi:10.1115/1.1568121

[3] J. K. Hale and S. M. V. Lunel, “Introduction to Functional Differential Equations,” Springer-Verlag, Berlin, 1993.

[4] S. I. Niculescu, “Delay Effects on Stability: A Robust Control Approach,” Springer, Berlin, 2001.

[5] A. K. Alomari, M. S. M. Noorani and R. Nazar, “Solution of Delay Differential Equation by Means of Homotopy Analysis Method,” Acta Applicandae Mathematicae, Vol. 108, No. 2, 2009, pp. 395-412.
doi:10.1007/s10440-008-9318-z

[6] D. J. Evans and K. R. Raslan, “The Adomian Decomposition Method for Solving Delay Differential Equation,” International Journal of Computer Mathematics, Vol. 82, No. 1, 2005, pp. 49-54.
doi:10.1080/00207160412331286815

[7] S. J. Liao, “Series Solutions of Unsteady Boundary-Layer Flows over Plate,” Mathematical Analysis and Applications, Vol. 117, No. 3, 2006, pp. 239-263.
doi:10.1111/j.1467-9590.2006.00354.x

[8] F. Shakeri and M. Dehghan, “Solution of Delay Diffrential Equation via a Homotopy Perturbation Method,” Mathematical and Computer Modelling, Vol. 48, No. 3-4, 2008, pp. 486-498. doi:10.1016/j.mcm.2007.09.016

[9] H. Gorecki, S. Fuksa, P. Grabowski and A. Korytowski, “Analysis and Synthesis of Time Delay Systems,” John Wiley and Sons, New York, 1989.

[10] X. Chen and L. Wang, “The Variational Iteration Method for Solving a Neutral Functional-Differential Equation with Proportional Delays,” Computers and Mathematics with Applications, Vol. 59, No. 8, 2010, pp. 2696-2702.
doi:10.1016/j.camwa.2010.01.037

[11] Z. Fan, M. Liu and W. Cao, “Existence and Uniqueness of the Solutions and Convergence of Semi-Implicit Euler Methods for Stochastic Pantograph Equations,” Mathematical Analysis and Applications, Vol. 325, No. 2, 2007, pp. 1142-1159. doi:10.1016/j.jmaa.2006.02.063

[12] R. Bellman and K. L. Cooke, “Differential-Difference Equations,” Academic Press, London, 1963.

[13] W. Wang, T. Qin and S. Li, “Stability of One-Leg θMethods for Nonlinear Neutral Differential Equations with Proportional Delay,” Applied Mathematics and Computation, Vol. 213, No. 1, 2009, pp. 177-183.
doi:10.1016/j.amc.2009.03.010

[14] A. Bellen and M. Zennaro, “A Reviw of DDE Methods,” In: G. H. Golub, C. H. Schwab, W. A. Light and E. Suli, Eds., Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, Clarendon Press, New York, 2003, pp. 36-60.

[15] E. Ishiwata and Y. Muroya, “Rational Approximation Method for Delay Differential Equations with Proportional Delay,” Applied Mathematics and Computation, Vol. 187, No. 2, 2007, pp.741-747.
doi:10.1016/j.amc.2006.08.086

[16] E. Ishiwata, Y. Muroya and H. Brunner, “A SuperAttainable Order in Collocation Methods for Differential Equations with Proportional Delay,” Applied Mathematics and Computation, Vol. 198, No. 1, 2008, pp. 227-236.
doi:10.1016/j.amc.2007.08.078

[17] P. Hu, C. Huang and S. Wu, “Asymptotic Stability of Linear Multistep Methods for Nonlinear Neutral Delay Differential Equations,” Applied Mathematics and Computation, Vol. 211, No. 1, 2009, pp. 95-101.
doi:10.1016/j.amc.2009.01.028

[18] W. Wang, Y. Zhang and S. Li, “Stability of Continuous Runge-Kutta-Type Methods for Nonlinear Neutral DelayDifferential Equations,” Applied Mathematical Modelling, Vol. 33, No. 8, 2009, pp. 3319-3329.
doi:10.1016/j.apm.2008.10.038

[19] W. Wang and S. Li, “On the One-Leg θ-Methods for Solving Nonlinear Neutral Functional Differential Equations,” Applied Mathematics and Computation, Vol. 193, No. 1, 2007, pp. 285-301. doi:10.1016/j.amc.2007.03.064

[20] G. Farin, “Curves and Surfaces for CAGO: A Practical Guide,” 1st Edition, Morgan Kaufmann, Waltham, 2001.

[21] G. Farin, “Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide,” 4th Edition, Academic Press, London, 1997.

[22] S. Mann, “A Blossoming Development of Spliness,” 1st Edition, Morgan Claypool, San Rafael, 2004.

[23] S. Biswa and B. Lovell, “Bezier and Splines in Image Processing and Machine Vision,” Springer-Verlag, Berlin, 2008.

[24] J. Zheng, T. Sedberg and R. Johansons, “Least Squares Methods for Solving Differential Equation Using Bezier Control Points,” Applied Numerical Mathematics, Vol. 48, No. 2, 2004, pp. 137-152.
doi:10.1016/j.apnum.2002.01.001

[25] B. Egerstedt and F. Martin, “A Note on the Connection between Bezier Curves and Linear Optimal Control,” IEEE Transactions on Automatic Control, Vol. 49, No. 10, 2004, pp. 1728-1731. doi:10.1109/TAC.2004.835393

[26] M. Mahmoud and P. Shi, “Methodologies for Control of Jump Time-Delay Systems,” Kluwer Academic Publishers, London, 2004.