ICA  Vol.3 No.2 , May 2012
Regional Controllability of Semi-Linear Distributed Parabolic Systems: Theory and Simulation
ABSTRACT
The aim of this brief paper is to give several results concerning the regional controllability of distributed systems governed by semi-linear parabolic equations. We concentrate on the determination of a control achieving internal and boundary regional controllability. The approach is based on an extension of the Hilbert Uniqueness Method (HUM) and Schauder’s fixed point theorem. We give a numerical example developed in internal and boundary sub region. These numerical illustrations show the efficiency of the approach and lead to conjectures.

Cite this paper
A. Kamal, A. Boutoulout and S. Beinane, "Regional Controllability of Semi-Linear Distributed Parabolic Systems: Theory and Simulation," Intelligent Control and Automation, Vol. 3 No. 2, 2012, pp. 146-158. doi: 10.4236/ica.2012.32017.
References
[1]   R. F. Curtain and A. J. Pritchard, “Infinite-Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences,” Springer Verlag, Berlin, 1978.

[2]   R. F. Curtain and H. Zwart, “An Introduction to Infinite Dimensional Linear Systems Theory,” Springer Verlag, Berlin, 1995.

[3]   K. Balachandran and J. P. Dauer, “Controllability of Nonlinear Systems via Fixed-Point Theorems”, Journal of Optimization Theory and Applications, Vol. 53, No. 3, 1987, pp. 345-352. doi:10.1007/BF00938943

[4]   H. Zhou, “Approximate Controllability for a Class of Semilinear Abstract Equations,” SIAM Journal on Control and Optimization, Vol. 21, No. 4, 1983, pp. 551-555. doi:10.1137/0321033

[5]   K. Naito, “Approximate Controllability for Trajectories of Semilinear Control Systems,” Journal of Optimization Theory and Applications, Vol. 60, No. 1, 1989, pp. 57-65. doi:10.1007/BF00938799

[6]   X. Li and J. Yong, “Optimal Control Theory for InfiniteDimension a Systems,” Birkhauser, Basel, 1994.

[7]   W. M. Bian, “Constrained Controllability of Some Nonlinear Systems,” Applicable Analysis, Vol. 72, No. 1-2, 1999, pp. 57-73. doi:10.1080/00036819908840730

[8]   N. Carmichael and M. D. Quinn, “Fixed-Point Methods in Nonlinear Control, Lecture notes in Control and Information Sciences,” Springer Verlag, Berlin, 1984.

[9]   X. Zhang, “Exact Controllability of Semilinear Evolution Systems and Its Application”, Journal of Optimization Theory and Applications, Vol. 107, No. 2, 2000, pp. 415432. doi:10.1023/A:1026460831701

[10]   T. I. Seidmann, “Invariance of the Reachable Set under Nonlinear Perturbations,” SIAM Journal on Control and Optimization, Vol. 25, No. 5, 1985, pp. 1173-1191. doi:10.1137/0325064

[11]   J. Klamka, “Constrained Approximate Controllability,” IEEE Transactions on Automatic Control, Vol. 45, No. 9, 2000, pp. 1745-1749. doi:10.1109/9.880640

[12]   J. Klamka, “Schauder’s Fixed-Point Theorem in Nonlinear Controllability Problems,” Control and Cybernetics, Vol. 29, No. 1, 2000, pp. 153-165.

[13]   J. Klamka, “Constrained Controllability of Semilinear Systems,” Nonlinear Analysis, Vol. 47, No. 6, 2001, pp. 2939-2949. doi:10.1016/S0362-546X(01)00415-1

[14]   K. Balachandran and R. Sakthivel, “Controllability of Integrodifferential Systems in Banach Spaces,” Applied Mathematics and Optimization, Vol. 118, No. 1, 2001, pp. 63-71. doi:10.1016/S0096-3003(00)00040-0

[15]   C. Fabre, J. P. Puel and E. Zuazua, “Approximate Controllability of the Semilinear Heat Equation”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Vol. 125, No. 1, 1995, pp. 31-64. doi:10.1017/S0308210500030742

[16]   E. Zuazua, “Contr?labilité Exacte d'un Modèle de Plaques Vibrantes en un Temps Arbitrairement Petit,” Comptes Rendus de l’Académie des Sciences, Vol. 304, No. 7, 1987, pp. 173-176.

[17]   I. Lasiecka and R. Triggiani, “Exact Controllability of Semilinear Abstract Systems with Applications to Waves and Plates Boundary Control Problems,” Applied Mathematics and Optimization, Vol. 23, No. 1, 1991, pp. 109154. doi:10.1007/BF01442394

[18]   K. Kassara and A. El Jai, “Algorithme Pour la Commande d’une Classe de Systèmes à Paramètres Répartis non Linéaires,” Applied Mathematics and Optimization, Vol. 1, 1993, pp. 3-24.

[19]   A. El Jai, A. J. Pritchard and E. Zerrik, “Regional Controllability of Distributed Systems,” International Journal of Control, Vol. 62, No. 6, 1995, pp. 1351-1365. doi:10.1080/00207179508921603

[20]   E. Zerrik, A. Boutoulout and A. El Jai, “Actuators and Regional Boundary Controllability of Parabolic Systems,” International Journal of Systems Science, Vol. 31, No. 1, 2000, pp. 73-82. doi:10.1080/002077200291479

[21]   J. Jacob, “Modélisation et Simulation Dynamique de Procédés des Eaux de Type Biofiltre. Traitement d'équations Différentielles Partielles Etalgébriques,” Thése de Doctorat I. N. P., Toulouse, 1994.

[22]   A. El Jai and A. J. Pritchard, “Capteurs et Actionneurs dans l’analyse des Systèmes Distribués,” Masson, Paris, 1986.

[23]   A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Springer-Verlag, 1983.

[24]   J. L. Lions and E. Magenes, “Problèmes aux Limites non Homogènes et Applications,” Dunod, Paris, 1968.

[25]   E. Zerrik and A. Kamal, “Output Controllability for Semi-Linear Distributed Parabolic Systems,” Journal of Dynamical and Control Systems, Vol. 13, No. 2, 2007, pp. 289-306. doi:10.1007/s10883-007-9014-8

[26]   A. El Jai and A. J. Pritchard, “Sensors and Actuators in Distributed Systems Analysis,” Ellis Horwood, Chichester, 1988.

[27]   A. El Jai, “Eléments de Contr?labilité,” Presses Universitaires de Perpignan, Perpignan, 2006.

[28]   J. L. Lions, “Contr?labilité Exacte, Perturbations et Stabilisation des Systèmes Distribués,” Masson, Paris, 1988.

[29]   H. Brezis, “Analyse Fonctionnelle: Théorie et Application,” Masson, Paris, 1983.

[30]   E. Zeidler, “Applied Functional Analysis: Applications to Mathematical Physics,” Springer-Verlag, Berlin, 1995.

 
 
Top