JMP  Vol.3 No.5 , May 2012
Impedance Spectroscopy of Ba5GdTi3V7O30
The polycrystalline sample of Ba5GdTi3V7O30 , a member of tungsten bronze structural family, was prepared by a high-temperature solid-state reaction technique. A preliminary X-ray diffraction analysis suggests the formation of single-phase compound with orthorhombic structure. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (102- 106 Hz) at different temperatures. The real and imaginary part of complex impedance traces semicircle(s) in the complex plane. The temperature dependent plots reveal the presence of both bulk and grain boundary effects. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The modulus analysis suggests a possible hopping mechanism for electrical transport processes of the material. The nature of variation of dc conductivity suggests Arrhenius type of electrical conductivity.

Cite this paper
B. Mohanty, P. Sahoo, M. Sahoo, R. Choudhary, R. Choudhary, R. Choudhary and R. Choudhary, "Impedance Spectroscopy of Ba5GdTi3V7O30," Journal of Modern Physics, Vol. 3 No. 5, 2012, pp. 357-361. doi: 10.4236/jmp.2012.35050.
[1]   L. X. Zhang, W. Chen and X. Ren, “Large Recoverable Electrostrain in Mn-Doped (Ba,Sr) TiO3 Ceramics,” Applied Physics Letters, Vol. 85, No. 23, 2004, pp. 5658- 5660. doi:10.1063/1.1829394

[2]   W. L. She, K. K. Lee and W. K. Lee, “All Optical Quasi- Steady-State Photorefractive Spatial Solitons,” Physical Review Letters, Vol. 85, No. 12, 2000, pp. 2498-2501. doi:10.1103/PhysRevLett.85.2498

[3]   M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectric and Related Materials,” Clarendon Press, Oxford, 1977.

[4]   B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London, 1971.

[5]   K. Uchino, “Piezoelectric Actuators and Ultrasonic Motors,” Kluwer Academics, Boston, 1997.

[6]   R. R. Neurgaonkar, M. H. Kalisher, T. C. Lim, E. J. Staples and K. L. Keester, “Czochralski Single Crystal Growth of Sr. 61Ba39Nb2O6 for Surface Acoustic Wave Applications,” Materials Research Bulletin, Vol. 15, No. 9, 1980, pp. 1235-1240. doi:10.1016/0025-5408(80)90025-2

[7]   W. Sakamoto, Y. Horie, T. Yogo and S. Hirano, “Synthesis and Properties of Highly Oriented (Sr, Ba)(Nb, Ta) 2O6 Thin Films by Chemical Solution Deposition,” Japanese Journal of Applied Physics, Vol. 40, 2001, pp. 5599-5604. doi:10.1143/JJAP.40.5599

[8]   P. Ganguly and A. K. Jha, “Investigations of Dielectric, Pyroelectric and Electrical Properties of Ba 5GdTi3V7O30 Ferroelectric Ceramic,” Journal of Alloys and Compounds, Vol. 484, No. 1-2, 2009, pp. 40-44. doi:10.1016/j.jallcom.2009.05.034

[9]   M. R. Ranga Raju, R. N. P. Choudhary and S. Ram, “Dielectric and Electrical Properties of Sr5EuCr3Nb7O30 Nanoceramics Prepared Using a Novel Chemical Route,” Physica Status Solidi B, Vol. 239, No. 2, 2003, pp. 480- 489.

[10]   P. V. Bijumon, V. Kohli, O. Parkash, M. R. Varma and M. T. Sebastian, “Dielectric Properties of Ba5MTi3A7O30 [M = Ce, Pr, Nd, Sm, Gd, Dy and Bi; A = Nb, Ta] Ceramics,” Materials Science and Engineering: B, Vol. 113, No. 1, 2004, pp. 13-18. doi:10.1016/j.mseb.2004.05.023

[11]   M. R. Ranga Raju and R. N. P. Choudhary, “Structural, Dielectric and Electrical Properties of Sr5RTi3Nb7O30 (R = Gd and Dy) Ceramics,” Materials Letters, Vol. 57, No. 19, 2003, pp. 2980-2987. doi:10.1016/S0167-577X(02)01408-8

[12]   H. Zhang, Z. Q. Liu, C. L. Diao and R. Z. Yuan and L. Fang, “Structural and Dielectric Properties of Sr4Ln2Ti4Ta6O30 (Ln = Nd and Sm) Ceramics,” Materials Letters, Vol. 59, No. 21, 2005, pp. 2634-2637. doi:10.1016/j.matlet.2005.04.006

[13]   X. H. Zheng and X. H. Zhou, “Crystal Structure and Dielectric Properties of La3+ Substituted Ba5LaTi3Ta7O30 Ceramics,” Journal of Materials Science: Materials in Electronics, Vol. 17, No. 12, 2006, pp. 987-991. doi:10.1007/s10854-006-9007-5

[14]   L. Fang, H. Zhang, J. F. Yang, X. K. Hong and F. C. Meng, “Preparation, Characterization and Dielectric Properties of Sr5LnTi3Ta7O30 (Ln=La, Nd) Ceramics,” Jour- nal of Materials Science: Materials in Electronics, Vol. 15, No. 6, 2004, pp. 355-357. doi:10.1023/B:JMSE.0000025677.53710.c8

[15]   X. M. Chen, Y. Yuan and Y. H. Sun, “Low Loss Dielectrics of Ba6Ti2Ta8O30 and Sr6Ti2Ta8O30 with Tungsten- Bronze Structure,” Solid State Communications, Vol. 125, 2003, pp. 449-452.

[16]   P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Structural, Dielectric, Electrical and Piezoelectric Properties of Ba4SrRTi3V7O30 (R=Sm, Dy) Ceramics,” Central European Journal of Physics, Vol. 6, No. 4, 2008, pp. 843-848. doi:10.2478/s11534-008-0112-3

[17]   P. S. Sahoo, A. Panigrahi, S. K. Patri and R. N. P. Choudhary, “Ferroelectric Phase Transition in Ba4SrSmTi3V7O30 Ceramics,” Materials Letters, Vol. 63, No. 11, 2009, pp. 864-866. doi:10.1016/j.matlet.2009.01.053

[18]   J. R. MacDonald “Impedance Spectroscopy,” Wiley, New York, 1987.

[19]   P. S. Sahoo, B. B. Mohanty, M. P. K. Sahoo and R. N. P. Choudhary, “Dielectric Anomaly in Ba5GdTi3V7O30 Ceramics,” Journal of Alloys and Compounds, (Communicated).

[20]   K. Prasad, A. Kumar, et al., “Relaxor Behaviour of Pb[(Mg3/4Co1/4)1/3Nb2/3]O3 Ceramic,” Solid State Ionics, Vol. 176, No. 17-18, 2005, pp. 1641-1646. doi:10.1016/j.ssi.2005.04.004

[21]   K. Sambasiva Rao, P. Murali Krishna, D. Madhava, Prasad, J.-H. Lee and J.-S. Kim, “Electrical, Electrome- chanical and Structural Studies of Lead Potassium Samarium Niobate Ceramics,” Journal of Alloys and Compounds, Vol. 464, No. 1-2, 2008, pp. 497-507. doi:10.1016/j.jallcom.2007.10.023

[22]   Lily, K. Kumari, K. Prasad and R. N. P. Choudhary, “Impedance Spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 Lead-Free Ceramic,” Journal of Alloys and Compounds, Vol. 453, No. 1-2, 2008, pp. 325-331. doi:10.1016/j.jallcom.2006.11.081

[23]   J. S. Kim, I. W. Kim, C. W. Ahn, et al., “Conduction Behavior of SrBi2Ta2O9 Thin Film Grown by Pulsed Laser Deposition,” Japanese Journal of Applied Physics, Vol. 41, 2002, pp. 6785-6789. doi:10.1143/JJAP.41.6785