Progressing of Quantum Tomography for Quantum Information Acquisition

References

[1] G. M. D’Ariano, “Quantum Tomography: General Theory and New Experiments,” Fortschr Phys, Vol. 48, No. 5-7, 2000, pp. 579-588.

[2]
G. M. D’Ariano, M. D. Laurentis, et al., “Quantum Tomography as a Tool for the Characterization of Optical Devices,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 4, No. 3, 2002, pp. S127-S132.

[3]
G. M. D’Ariano, M. G. A. Paris and M. F. Sacchi, “Quantum Tomography,” Advances in Imaging and Electron Physics, Academic Press Inc., Vol. 128, 2003, pp. 205- 308.

[4]
L. M. Artiles, R. D. Gill and M. I. Guta, “An Invitation to Quantum Tomography,” Journal of the Royal Statistical Society Series B, Vol. 67, No. 1, 2005, pp. 109-134.

[5]
Z. Hradil, J. Rehacek, et al., “Qubit Quantum State Tomography,” Lecture Notes in Physics, Vol. 649, 2004, pp. 113–145.

[6]
M. G. A. Paris and J. Rehácek, “Quantum State Estimation,” Springer, Berlin, 2004.

[7]
W. K. Wootters and W. H. Zurek, “A Single Quantum cannot be Cloned,” Nature, Vol. 299, No. 5886, 1982, pp. 802-803.

[8]
W. Heisenberg, “Uber den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik, ” Zeits- chrift für Physik, Vol. 43, 1927, pp. 172-198.

[9]
G. M. D’Ariano and H. P. Yuen, “Impossibility of Measuring the Wave Function of a Single Quantum System,” Physical Review Letters, Vol. 76, No. 16, 1996, pp. 2832- 2835.

[10]
U. Fano, “Description of States in Quantum Mechanics by Density Matrix and Operator Techniques,” Reviews of Modern Physics, Vol. 29, No. 1, 1957, pp. 74-93.

[11]
Q. A. Turchette, C. J. Hood, et al., “Measurement of Conditional Phase Shifts for Quantum Logic,” Physical Review Letters, Vol. 75, No. 25, 1995, pp. 4710-4713.

[12]
J. F. Poyatos, J. I. Cirac and P. Zoller, “Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate,” Physical Review Letters, Vol. 78, No. 2, 1997, pp. 390-393.

[13]
G. M. D’Ariano and P. L. Presti, “Quantum Tomography for Measuring Experimentally the Matrix Elements of an Arbitrary Quantum Operation,” Physical Review Letters, Vol. 86, No. 19, 2001, pp. 4195-4198.

[14]
D. T. Smithey, M. Beck, et al., “Measurement of the Wigner Distribution and The Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and The Vacuum,” Physical Review Letters, Vol. 70, No. 9, 1993, pp. 1244-1247.

[15]
M. G. Raymer, M. Beck and D. McAlister, “Complex Wave-Field Reconstruction Using Phase-Space Tomography,” Physical Review Letters, Vol. 72, No. 8, 1994, pp. 1137-1140.

[16]
T. J. Dunn, I. A. Walmsley and S. Mukamel, “Experimental Determination of the Quantum-Mechanical State of a Molecular Vibrational Mode Using Fluorescence Tomography,” Physical Review Letters, Vol. 74, No. 6, 1995, pp. 884-887.

[17]
V. Buzek, R. Derka, et al., “Reconstruction of Quantum States of Spin Systems: From Quantum Bayesian Inference to Quantum Tomography,” Annals of Physics, Vol. 266, No. 2, 1998, pp. 454-496.

[18]
T. Coudreau, L. Vernac, et al., “Quantum Tomography of a Laser Beam Interacting with Cold Atoms,” Europhysics Letters, Vol. 46, No. 6, 1999, pp. 722-727.

[19]
O. V. Man’ko, “Optical Tomography and Measuring Quantum States of an Ion in a Paul Trap and in a Penning Trap,” Proceedings of the SPIE-The International Society for Optical Engineering, Orlando, Vol. 3736, 1999, pp. 68-75.

[20]
V. A. Andreev and V. I. Man’Ko, “Quantum Tomography of Spin States and the Einstein-Podolsky-Rosen Para- dox,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 2, No. 2, 2000, pp. 122-125.

[21]
M. Beck, “Quantum State Tomography with Array Detectors,” Physical Review Letters, Vol. 84, No. 25, 2000, pp. 5748-5751.

[22]
A. Luis, “Quantum Tomography of Input-Output Processes,” Physical Review A, Vol. 62, No. 5, 2000, pp. (054 302)1-4.

[23]
M. G. Raymer and A. C. Funk, “Quantum-State Tomography of Two-Mode Light Using Generalized Rotations in Phase Space,” Physical Review A, Vol. 61, No. 1, 2000, pp. (015801)1-3.

[24]
A. M. Childs, I. L. Chuang and D. W. Leung, “Realization of Quantum Process Tomography in NMR,” Physical Review A, Vol. 64, No. 1, 2001, pp. (012314)1-7.

[25]
J. S. Lee, “The Quantum State Tomography on an NMR System,” Physics Letters A, Vol. 305, No. 6, 2002, pp. 349-353.

[26]
G. M. D’riano, C. Macchiavello and M. G. A. Paris, “Detection of the Density Matrix through Optical Homodyne Tomography without Filtered Back Projection,” Physical Review A, Vol. 50, No. 5, 1994, pp. 4298-4302.

[27]
G. M. D’riano, U. Leonhardt and H. Paul, “Homodyne Detection of the Density Matrix of the Radiation Field,” Physical Review A, Vol. 52, No. 3, 1995, pp. (R)1801- 1804.

[28]
M. Munroe, D. Boggavarapu, et al., “Photon-Number Statistics from the Phase-Averaged Quadrature-Field Distribution: Theory and Ultrafast Measurement,” Physical Review A, Vol. 52, No. 2, 1995, pp. (R)924-927.

[29]
S. Schiller, G. Breitenbach, et al., “Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrix in the Number State Representation,” Physical Review Letters, Vol. 77, No. 14, 1996, pp. 2933-2936.

[30]
S. Wallentowitz and W. Vogel, “Reconstruction of the Quantum Mechanical State of a Trapped Ion,” Physical Review Letters, Vol. 75, No. 16, 1995, pp. 2932-2935.

[31]
T. J. Dunn, I. A. Walmsley and S. Mukamel, “Experimental Determination of the Quantum-Mechanical State of a Molecular Vibrational Mode Using Fluorescence Tomography,” Physical Review Letters, Vol. 74, No. 6, 1995, pp. 884-887.

[32]
C. Kurtsiefer, T. Pfau and J. Mlynek, “Measurement of the Wigner Function of an Ensemble of Helium Atoms,” Nature, Vol. 386, No. 6621, 1997, pp. 150-153.

[33]
D. Leibfried, D. M. Meekhof, et al., “Experimental Determination of the Motional Quantum State of a Trapped Atom,” Physical Review Letters, Vol. 77, No. 21, 1996, pp. 4281-4285.

[34]
M. A. Nielsen, E. Knill and R. Laflamme, “Complete Quantum Teleportation Using Nuclear Magnetic Resonance,” Nature, Vol. 396, No. 6706, 1998, pp. 52-55.

[35]
J. B. Altepeter, D. Branning, et al., “Ancilla-Assisted Quantum Process Tomography,” Physical Review Letters, Vol. 90, No. 19, 2003, pp. (193601)1-4.

[36]
F. D. Martini, A. Mazzei, et al., “Exploiting Quantum Parallelism of Entanglement for a Complete Experimental Quantum Characterization of a Single-Qubit Device,” Physical Review A, Vol. 67, No. 6, 2003, pp. (062307)1-5.

[37]
L. E. Ballentine, “Quantum Mechanics: a Modern Development,” World Scientific Publishing Company, Singapore, 1998.

[38]
K. E. Cahill and R. J. Glauber, “Ordered Expansions in Boson Amplitude Operators,” Physical Review, Vol. 177, No. 5, 1969, pp. 1857-1881.

[39]
C. T. Lee, “Theorem on Nonclassical States,” Physical Review A, Vol. 52, No. 4, 1995, pp. 3374-3376.

[40]
A. I. Lvovsky, “Iterative Maximum-Likelihood Reconstruction in Quantum Homodyne Tomography,” Journal of Optics B: Quantum and Semiclassical Optics, Vol. 6, No. 6, 2004, pp. (S)556-559.

[41]
G. M. D’Ariano and M. G. A. Paris, “Adaptive Quantum Homodyne Tomography,” Physical Review A, Vol. 60, No. 1, 1999, pp. 518-528.

[42]
H. P. Yuen and V. W. S. Chan, “Noise in Homodyne and Heterodyne-Detection,” Optics Letters, Vol. 8, No. 3, 1983, pp. 177-179.

[43]
G. L. Abbas, V. W. S. Chan and S. T. Yee, “Local-Oscill- Ator Excess-Noise Suppression for Homodyne and Heterodyne Detection,” Optics Letters, Vol. 8, No. 8, 1983, pp. 419-421.

[44]
M. Beck, D. T. Smithey and M. G. Raymer, “Experimental Determination of Quantum-Phase Distributions Using Optical Homodyne Tomography,” Physical Review A, Vol. 48, No. 2, 1993, pp. (R)890-893.

[45]
J. J. Longdell and M. J. Sellars, “Experimental Demonstration of Quantum-State Tomography and Qubit-Qubit Interactions for Rare-Earth-Metal-Ion-Based Solid-State Qubits,” Physical Review A, Vol. 69, No. 3, 2004, pp. (32307)1-5.

[46]
Y. X. Liu, L. F. Wei and F. Nori, “Quantum Tomography for Solid-State Qubits,” Europhysics Letters, Vol. 67, No. 6, 2004, pp. 874-880.

[47]
Y. Nambu and K. Nakamura, “Experimental Investigation of a Nonideal Two-Qubit Quantum-State Filter by Quantum Process Tomography,” Physical Review Letters, Vol. 94, No. 1, 2005, pp. (010404)1-4.

[48]
M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.

[49]
Y. Nambu, K. Usami, et al., “Generation of Polarization-Entangled Photon Pairs in a Cascade of Two Type-I Crystals Pumped by Femtosecond Pulses,” Physical Review A, Vol. 66, No. 3, 2002, pp. (033816)1-10.

[50]
W. Dür and J. I. Cirac, “Nonlocal Operations: Purification, Storage, Compression, Tomography, and Probabilistic Implementation,” Physical Review A, Vol. 64, No. 1, 2001, pp. (012317)1-14.

[51]
Z. S. Sazonova and R. Singh, “Detection and Correction of Errors with Quantum Tomography,” Proceedings of the SPIE-The International Society for Optical Engineering, Seattle, Vol. 4750, 2002, pp. 47-53.

[52]
D. F. V. James, P. G. Kwiat, et al., “Measurement of Qubits,” Physical Review A, Vol. 64, No. 5, 2001, pp. (052312)1-15.

[53]
J. Rehacek and Z. Hradil, “Maxent Assisted Maxlik Qu- antum Tomography,” AIP Conference Proceedings, New York, Vol. 707, 2004, pp. 480-489.

[54]
V. Buzek, “Quantum Tomography from Incomplete Data via Maxent Principle,” Quantum State Estimation, Lecture Notes in Physics, Springer-Verlag. Vol. 649. 2004, pp. 189-234.

[55]
V. Buzek and G. Drobny, “Quantum Tomography via the MaxEnt Principle,” Journal of Modern Optics, Vol. 47, No. 14-15, 2000, pp. 2823-2839.

[56]
K. Banaszek, “Maximum-Likelihood Algorithm for Qu- antum Tomography,” Acta Physica Slovaca, Vol. 49, No. 4, 1999, pp. 633-638.

[57]
G. M. D’Ariano, M. Rubin, et al., “Quantum Tomography of the GHZ State,” Fortschr Phys, Vol. 48, No. 5-7, 2000, pp. 599-603.

[58]
G. L. Long, H. Y. Yan, et al., “Experimental NMR Realization of a Generalized Quantum Search Algorithm,” Physics Letters A, Vol. 286, No. 2-3, 2000, pp. 121-126.

[59]
G. L. Long, H. Y. Yan and Y. Sun, “Analysis of Density Matrix Reconstruction in NMR Quantum Computing,” Journal of Optics B, Vol. 3, No. 6, 2001, pp. 376-381.

[60]
I. L. Chuang, N. Gershenfeld, et al., “Bulk Quantum Computation with Nuclear Magnetic Resonance: Theory and Experiment,” Proceedings of the Royal Society A, London, Vol. 454, No. 1969, 1998, pp. 447-467.

[61]
X. Ji and B. H. Wildenthal, “Effective Interaction for N = 50 Isotones,” Physical Review C, Vol. 37, No. 3, 1988, pp. 1256-1266.

[62]
A. Peres, “Quantum Theory: Concepts and Methods,” Kluwer, Dordrecht, 1995.