Domain Wall Width in Different Ferroelectrics via Perturbation Route

Show more

References

[1] H. Fu and R. E. Cohen, “Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-Crystal Piezoelectrics,” Nature, Vol. 403, No. 6767, 2000, pp. 281-283. doi:10.1038/35002022

[2] S. Kim, V. Gopalan and A. Gruverman, “Coercive Fields in Ferroelectrics: A Case Study in Lithium Niobate and Lithium Tantalite,” Applied Physics Letters, Vol. 80, No. 15, 2002, pp. 2740-2742. doi:10.1063/1.1470247

[3] D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena and P. J. Swart, “Phenomenological Theory of a Single Domain Wall in Uniaxial Trigonal Ferroelectrics: Lithium Niobate and Lithium Tantalate,” Physical Review B, Vol. 71, No. 18, 2005, pp. 184110-184122.
doi:10.1103/PhysRevB.71.184110

[4] A. K. Bandyopadhyay and P. C. Ray, “Perturbation Analysis and Memory in Ferroelectric Materials,” Journal of Applied Physics, Vol. 95, No. 1, 2004, pp. 226-230.
doi:10.1063/1.1630698

[5] M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials Clarendon,” Clarendon Press, Oxford, 1977.

[6] V. Gopalan and T. E. Mitchell, “Wall Velocities, Switching Times, and Stabilization Mechanism of 180? Domains in Congruent LiTaO_{3} Crystals,” Journal of Applied Physics, Vol. 83, No. 2, 1998, pp. 941-954. doi:10.1063/1.366782

[7] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “Dynamical Systems Analysis for Polarization in Ferroelectrics,” Journal of Applied Physics, Vol. 100, No. 11, 2006, pp. 114106-114109. doi:10.1063/1.2388124

[8] J. Padilla, W. Zhong and D. Vanderbilt, “Heterovalent and A-Atom Effects in A(B'B″) O_{3} Perovskite Alloys,” Physical Review B, Vol. 59, No, 3, 1996, pp. 1834-1839.
doi:0.1103/PhysRevB.59.1834

[9] B. Meyer and D. Vanderbilt, “Ab initio Study of Ferroelectric Domain Walls in PbTi O_{3},” Physical Review B, Vol. 65, No. 10, 2002, pp. 104111-104121.
doi:10.1103/PhysRevB.65.104111

[10] N. Floquet, C. M. Valot, M. T. Mesnier, J. C. Niepce, L. Normand, M. Thorel and R. Kilaas, “Ferroelectric Domain Walls in BaTiO_{3}: Fingerprints in XRPD Diagrams and Quantitative HRTEM Image Analysis,” Journal of Physics III, Vol. 7, No. 6, 1997, pp. 1105-1128.
doi:10.1051/jp3:1997180

[11] Y. Girshberg and Y. Yacoby, “Ferroelectric Phase Transitions and Off-Centre Displacements in Systems with Strong Electron-Phonon Interaction,” Journal of Physics: Condensed Matter, Vol. 11, No. 48, 1999, pp. 9807-9822.
doi:10.1088/0953-8984/11/48/337.

[12] A. L. Roytburd, “Elastic Domains and Polydomain Phases in Solids,” Phase Transitions B, Vol. 45, 1993, pp. 1-34.
doi:10.1080/01411599308203516

[13] W. Zhang and K. Bhattacharya, “A Computational Model of Ferroelectric Domains. Part II: Grain Boundaries and Defect Pinning,” Acta Materialia, Vol. 53, No. 1, 2005, pp. 199-209. doi:10.1016/j.actamat.2004.09.015

[14] W. Zhang and K. Bhattacharya, “A Computational Model of Ferroelectric Domains. Part I: Model Formulation and Domain Switching,” Acta Materialia, Vol. 53, No. 1, 2005, pp. 185-198. doi:10.1016/j.actamat.2004.09.016

[15] Y. Su and C. M. Landis, “Continuum Thermodynamics of Ferroelectric Domain Evolution: Theory, Finite Element Implementation, and Application to Domain Wall Pinning,” Journal of the Mechanics and Physics of Solids, Vol. 55, No. 2, 2007, pp. 280-305. doi:10.1016/j.jmps.2006.07.006

[16] N. Floquet and C. Valot, “Ferroelectric Domain Walls in BaTiO_{3}: Structural Wall Model Interpreting Fingerprints in XRPD Diagrams,” Ferroelectrics, Vol. 234, No. 1, 1999, pp. 107-122. doi:10.1080/00150199908225285

[17] W. Yan, et al., “The Relationship between the Switching Field and the Intrinsic Defects in Near-Stoichiometric Lithium Niobate Crystals,” Journal of Physics D: Applied Physics, Vol. 39, No. 1, 2006, pp. 21-24.
doi:10.1088/0022-3727/39/1/004

[18] L. Tian, V. Gopalan and L. Galambos, “Domain Reversal in Stoichiometric LiTaO_{3} Prepared by Vapor Transport Equilibration,” Applied Physics Letters, Vol. 85, No. 19, 2004, pp. 4445-4447. doi:10.1063/1.1814436

[19] V. Gopalan, V. Dierolf and D. A. Scrymgeour, “Defect-Domain Wall Interactions in Trigonal Ferroelectrics,” Annual Reviews Materials Research, Vol. 37, 2007, pp. 449-489. doi:10.1146/annurev.matsci.37.052506.084247

[20] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “Solitons and Critical Breakup Fields in Lithium Niobate Type Uniaxial Ferroelectrics,” European Physical Journal B, Vol. 65, No. 4, 2008, pp. 525-531.
doi:10.1140/epjb/e2008-00356-9

[21] A. K. Bandyopadhyay, P. C. Ray, L. Vu-Quoc and A. R. McGurn, “Multiple-Time-Scale Analysis of Nonlinear Modes in Ferroelectric LiNbO_{3},” Physical Review B, Vol. 81, No. 6, 2010, pp. 064104-064114.
doi:10.1103/PhysRevB.81.064104

[22] A. K. Bandyopadhyay, P. C. Ray and V. Gopalan, “An Approach to the Klein-Gordon Equation for a Dynamic Study in Ferroelectric Materials,” Journal of Physics: Condensed Matter, Vol. 18, No. 16, 2006, pp. 4093-4100.
doi:10.1088/0953-8984/18/16/016

[23] P. Giri, S. Ghosh, K. Choudhary, Md. Alam, A. K. Bandyopadhyay and P. C. Ray, “Importance of Damping on Nanoswitching in LiNb O_{3}-Type Ferroelectrics,” Physica Scripta, Vol. 83, No. 1, 2011, p. 015702.
doi:10.1088/0031-8949/83/01/015702.

[24] A. Biswas, K. Choudhary, A. K. Bandyopadhyay, A. K. Bhattacharjee and D. Mandal, “Quantum Pining-Transition Due to Charge Defect in Ferroelectrics,” Journal of Applied Physics, Vol. 110, No. 2, 2011, pp. 024104-024111.
doi:10.1063/1.3607298