[1] D. Li, “Electrokinetics in Microfluidics: Interfaces Science and Technology,” 1st Edition, Academic Press, New York, 2004.
[2] M. S. Yoon, B. J. Kim and H. J. Sung, “Pumping and Mixing in a Microchannel Using AC Asymmetric Electrode Arrays,” International Journal of Heat and Fluid Flow, Vol. 29, 2008, pp. 269-280. doi:10.1016/j.ijheatfluidflow.2007.10.002
[3] J. Lyklema, “Fundamentals of Interface and Colloid Science,” 1st Edition, Academic Press, New York, 1995.
[4] R. J. Hunter, “Zeta Potential in Colloid Science,” 1st Edition, Academic Press, New York, 1981.
[5] Y. Zhen and L. G. Anthony, “Electrokinetic Transport and Separations in Fluidic Nanochannels,” Electrophoresis, Vol. 28, No. 4, 2007, pp. 595-610. doi:10.1002/elps.200600612
[6] J. M. Edwards and M. N. Hamblin, “Thin Film Electroosmotic Pumps for Biomicrofluidic Applications,” Biomicrofluidics, Vol. 1, No. 1, 2007, Article ID 014101.
[7] A. L. Margaret and C. J. Stephen, “Electrokinetic Fluid Control in Two-Dimensional Planar Microfluidic Devices,” Analytical Chemistry, Vol. 79, No. 19, 2007, pp. 7485-7491. doi:10.1021/ac071003y
[8] G. E. Karniadakis and A. Beskok, “Micro Flows: Fundamentals and Simulation,” Springer-Verlag, New York, 2002.
[9] D. B. Pengra, S. L. Li and P. Wong, “Determination of Rock Properties by Low Frequency AC Electrokinetics,” Journal of Geo-physical Research, Vol. 104, No. B12, 1999, pp. 29485-29508. doi:10.1029/1999JB900277
[10] H. K. Yang, H. Y. Jiang, et al., “AC electrokinetic Pumping on Symmetric Electrode Arrays,” Microfluid and Nanofluid, Vol. 7, 2009, pp. 767-772.
[11] A. Ramos, A. Gonzalez, A. Castellanos, et al., “Pumping of Liquids with AC Voltages Applied to Asymmetric Pairs of Microelectrodes,” Physical Review E, Vol. 67, No. 5, 2003, Article ID 056302. doi:10.1103/PhysRevE.67.056302
[12] M. Pribyl, K. Adamiak, et al., “Numerical Models for AC Electro-Osmotic Micropumps,” IEEE Industry Applications Society Annual Meeting, Edmonton, 5-9 October 2008, pp. 1870-1877.
[13] A. Ramos, H. Morgan, N. G. Green, et al., “Pumping of Liquids with Traveling-Wave Electroosmosis,” Journal of Applied Physics, Vol. 97, No. 8, 2005, Article ID 084906. doi:10.1063/1.1873034
[14] A. Ramos, A. Gonzalez, P. Garcia-Sanchez, et al., “A Linear Analysis of the Effect of Faradaic Currents on Traveling-Wave Electroosmosis,” Journal of Colloid and Interface Science, Vol. 309, No. 2, 2007, pp. 323-331. doi:10.1016/j.jcis.2007.01.076
[15] A. Gonzalez, A. Ramos and A. Castellanos, “Pumping of Electrolytes Using Traveling-Wave Electro-Osmosis: A Weakly Nonlinear Analysis,” Microfluid and Nanofluid, Vol. 5, 2008, pp. 507-515. doi:10.1007/s10404-008-0261-0
[16] P. Garcia-Sanchez and A. Ramos, “The Effect of Electrode Height on the Performance of Traveling-Wave Electroosmotic Micropumps,” Microfluid and Nanofluid, Vol. 5, 2008, pp. 307-312. doi:10.1007/s10404-007-0247-3
[17] M. Z. Bazant and T. M. Squires, “Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications,” Physical Review Letters, Vol. 92, No. 6, 2004, Article ID 066101. doi:10.1103/PhysRevLett.92.066101
[18] Y. Zhang, J. k. Wu and B. Chen, “A Coordinate Transformation Method for Numerical Solutions of the Electric Double Layer and Electroosmotic ?ows in a Microchannel,” International Journal for Numerical Methods in Fluids, Vol. 68, No. 6, 2012, pp. 671-685. doi:10.1002/fld.2527
[19] J. Hrdlicka, P. Cervenka, M. Pribyl and D. Snita, “Mathematical Modeling of AC Electroosmosis in Microfluidic and Nanofluidic Chips Using Equilibrium and Non-Equilibrium Approaches,” Journal of Applied Electrochemistry, Vol. 40, No. 5, 2010, pp. 967-980. doi:10.1007/s10800-009-9966-3