ABC  Vol.2 No.2 , May 2012
Synthesis and evaluation of diphenol aldimines as inhibitors of Escherichia coli ATPase and cell growth
ABSTRACT
A series of structurally related diphenol aldimines (DPAs) were synthesized. These aldimines involve different substitution patterns of their phenolic groups, for the purpose of optimizing their ability to inhibit ATP synthase. The inhibitory effects of these DPA compounds were evaluated using purified F1 and membrane-bound F1F0 E. coli ATP synthase. Structure-activity relationship studies of these di-phenol compounds showed that maximum inhibition was achieved when both phenolic groups are either in the meta-positions (DPA-7, IC50 = 2.0 μM), or in the ortho-positions (DPA-9, IC50 = 5.0 μM). The lowest ATP synthase inhibition was found to be when the phenolic groups are both in the para-positions (DPA-2, IC50 = 100.0 μM). Results also show that the inhibitory effects of these compounds on ATPase are completely reversible. Identical inhibition patterns of both the purified F1 and the membrane bound F1F0 enzyme were observed. Study of E. coli cell growth showed that these diphenol aldimines effectively inhibit both ATP synthesis and cell growth.

Cite this paper
Ahmad, Z. , Dadi, P. , Elord, J. and Kady, I. (2012) Synthesis and evaluation of diphenol aldimines as inhibitors of Escherichia coli ATPase and cell growth. Advances in Biological Chemistry, 2, 160-166. doi: 10.4236/abc.2012.22019.
References
[1]   [1] Hong, S. and Pedersen, P.L. (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiology Molecular Biology Reviews, 72, 590-641. doi:10.1128/MMBR.00016-08

[2]   Noji, H. and Yoshida, M. (2001) The rotary machine in the cell, ATP synthase. Journal of Biological Chemistry, 276, 1665-1668. doi:10.1074/jbc.R000021200

[3]   Weber, J. and Senior, J.A.E. (2003) Synthesis driven by proton transport in F1F0-ATP synthase. FEBS Letters, 545, 61-70. doi:10.1016/S0014-5793(03)00394-6

[4]   Ahmad, Z. and Laughlin, T.F. (2010) Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Current Medicinal Chemistry, 17, 2822-2836.

[5]   Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto, Y., Shibata, H., Magota, K. and Higuti, T. (2003) Possible role of cell surface H+-ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Molecular Cancer Research, 1, 931-939.

[6]   Martinez, L.O., Jacquet, S., Esteve, J.P., Rolland, C., Cabezon, E., Champagne, E., Pineau, T., Georgeaud, V., Walker, J.E., Terce, F., Collet, X., Perret, B. and Barbaras, R. (2003) Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 421, 75-79. doi:10.1038/nature01250

[7]   Chang, S.Y., Park, S.G., Kim, S. and Kang, C.Y. (2002) Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase and its functional implication in endothelial cell proliferation. The Journal of Biological Chemistry, 277, 8388-8394. doi:10.1074/jbc.M108792200

[8]   Scotet, E., Martinez, L.O., Grant, E., Barbaras, R., Jeno, P., Guiraud, M., Monsarrat, B., Saulquin, X., Maillet, S., Esteve, J. P., Lopez, F., Perret, B., Collet, X., Bonneville, M. and Champagne, E. ((2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity, 22, 71-80. doi:10.1016/j.immuni.2004.11.012

[9]   Burwick, N.R., Wahl, M.L., Fang, J., Zhong, Z., Moser, T.L., Li, B., Capaldi, R.A., Kenan, D.J. and Pizzo, S.V. (2005) An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of Angiostatin on the endothelial cell surface. Journal of Biological Chemistry, 280, 1740- 1745. doi:10.1074/jbc.M405947200

[10]   Moser, T.L., Kenan, D.J., Ashley, T.A., Roy, J.A., Goodman, M.D. and Misra, U.K. (2000) Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. PNAS, 98, 6656-6661. doi:10.1073/pnas.131067798

[11]   Huang, T.-C., Chang, H.-Y., Hsu, C.-H., Kuo, W.-H., Chang, K.-J. and Juan, H.-F. (2008) Targeting therapy for breast carcinoma by ATP synthase inhibitor Aurovertin B. Journal of Proteome Research, 7, 1433-1444. doi:10.1021/pr700742h

[12]   Chi, S.L. and Pizzo, S.V. (2006) Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP sy- Mnthase. Cancer Research, 66, 875-882. doi:10.1158/0008-5472.CAN-05-2806

[13]   Kim, B.W., Choo, H.J., Lee, J.W., Kim, J.H. and Ko, Y.G., (2004) Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Experimental and Molecular Medicine, 36, 476-485.

[14]   Arakaki, N., Nagao, T., Niki, R., Toyofuku, A., Tanaka, H., Kuramoto, Y., Emoto, Y., Shibata, H., Magota, K. and Higuti, T. (2003) Possible role of cell surface H+-ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Molecular Cancer Research, 1, 931-939.

[15]   Johnson, K.M., Cleary, J., Fierke, C.A., Opipari, A.W. and Glick, G.D. (2006) Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPase. ACS Chemical Biology, 1, 304-308. doi:10.1021/cb600143j

[16]   Moreno-Sa′nchez, R., Rodr?′guez-Enr?′quez, S., Mar?′n- Herna′ndez, A. and Saavedra, E. (2007) Energy metabolism in tumor cells. FEBS Journal, 274, 1393-1418. doi:10.1111/j.1742-4658.2007.05686.x

[17]   Toogood, P.L. (2008) Mitochondrial drugs. Current Opinion in Chemical Biology, 12, 457-463. doi:10.1016/j.cbpa.2008.06.002

[18]   Duarte, S., Gregoire, S., Singh, A.P., Vorsa, N., Schaich, K., Bowen, W.H. and Koo, H. (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiology Letters, 257, 50-56. doi:10.1111/j.1574-6968.2006.00147.x

[19]   Percival, R.S., Devine, D.A., Duggal, M.S., Chartron, S. and Marsh, P.D. (2006) The effect of cocoa polyphenols on the growth, metabolism, and biofilm formation by Streptococcus mutans and Streptococcus sanguinis. European Journal of Oral Sciences, 114, 343-348. doi:10.1111/j.1600-0722.2006.00386.x

[20]   Anderies, K., Verhasselt, P., Guillemont, J., Gohlmann, H.W.H., Neefs, J.M., Winkler, H., Gestel, J.F., Timmerman, P., Zhu, M., Lee, E., Williams, P., Chaffoy, D.D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. and Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of mycobacterium tuberculosis. Science, 307, 223-227. doi:10.1126/science.1106753

[21]   Barta, I., Smerak, P., Polivkova, Z., Sestakova, H., Langova, M., Turek, B. and Bartova, J. (2006) Current trends and perspectives in nutrition and cancer prevention. Neoplasma, 53, 19-25.

[22]   Nishino, H., Murakoshi, M., Mou, X.-Y., Wada, S., Masuda, M., Ohsaka, Y., Satomi, Y. and Jinno, K. (2005) Cancer prevention by phytochemicals. Oncology, 69, 38- 40. doi:10.1159/000086631

[23]   Gledhill, J.R., Montgomery, M.G.., Leslie, A.G.W. and Walker J.W. (2007) Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proceedings of the National Academy of Sciences USA, 104, 13632-13637. doi:10.1073/pnas.0706290104

[24]   Chinnam, N., Dadi, P.K., Sabri, S.A., Ahmad, M., Kabir, M.A. and Ahmad, Z. (2010) Role of charged residues in the catalytic sites of Escherichia coli ATP synthase. International Journal of Biological Macromolecules, 46, 478-486. doi:10.1016/j.ijbiomac.2010.03.009

[25]   Dadi, P.K., Ahmad, M. and Ahmad, Z. (2009) Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. International Journal of Biological Macromolecules, 45, 72-79. doi:10.1016/j.ijbiomac.2009.04.004

[26]   Zheng, J. and Ramirez, V.D. (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology, 130, 1115-1123. doi:10.1038/sj.bjp.0703397

[27]   Ketchum, C.J., Al-Shawi, M.K. and Nakamoto, R.K. (1998) Intergenic suppression of the gammaM23K uncoupling mutation in F0F1 ATP synthase by betaGlu-381 substitutions: the role of the beta380DELSEED386 segment in energy coupling. Biochemical Journal, 330, 707-712.

[28]   Weber, J., Lee, R.S.F., Grell, E., Wise, J.G. and Senior, A.E. (1992) On the location and function of tyrosine beta 331 in the catalytic site of Escherichia coli F1-ATPase. Journal of Biological Chemistry, 267, 1712-1718.

[29]   Taussky, H.H. and Shorr, E. (1953) A microcolorimetric method for the determination of inorganic phosphate. Journal of Biological Chemistry, 202, 675-685.

[30]   Senior, A.E., Latchney, L.R., Ferguson, A.M. and Wise, J.G. (1984) Purification of F1-ATPase with impaired catalytic activity from partial revertants of Escherichia coliuncA mutant strains. Archives of Biochemistry and Biophysics, 228, 49-53. doi:10.1016/0003-9861(84)90045-6

[31]   Sun, H.-Y., Xiao, C.-F., Cai, Y.-C., Chen, Y., Wei, W., Liu, X.-K., Lv, Z.-L. and Zou, Y. (2010) Efficient synthesis of natural polyphenolic stilbenes: resveratrol, piceatannol and oxyresveratrol. Chemical and Pharmaceutical Bulletin, 58, 1492-1496. doi:10.1248/cpb.58.1492

[32]   Solomon, K.R.H., Lieberman, H.E., Groundwater, P.W., Hibbs, D.E. and Hursthouse, M. (1997) Molecular modeling and biological evaluation of a series of hydroxyla-ted benzylideneanilines and benzylamines designed as tyrosine kinase inhibitors. Anti-Cancer Drug Design, 12, 635-647.

[33]   Bigelow, L.A. and Gatough, H. (1941) Benzalpinacolone. Organic Synthesis Collective, 1, 81.

[34]   Ibrahim, H.N. and Al-Deeb, H.K. (2006) Synthesis, characterization and study of the biological activity of some aldimines derivatives. E-Journal of Chemistry, 3, 257-261. aldimines derivatives. E-Journal of Chemistry, 3(13), 257-261. doi:10.1155/2006/618718

[35]   Perlin, D.S., Latchney, L.R. and Senior, A.E. (1985) Inhibition of Escherichia coli H+-ATPase by venturicidin, oligomycin and ossamycin. Biochimica Biophysica Acta, 807, 238-244. doi:10.1016/0005-2728(85)90254-3

 
 
Top