ABC  Vol.2 No.2 , May 2012
SSINCC: Simple separation of interacting nucleoprotein complex components
Protein-DNA binding assays have been used in a va-riety of applications from fundamental studies re-garding the binding process itself to serve as probes for the detection, quantification and separation of target analytes. Here we describe a novel method of analyzing and identifying intermolecular DNA interactions that allows for the simple separation of interacting nucleoprotein complex components (SSINCC), focusing specifically on DNA-DNA interactions using P1 plasmid active partition system nucleoprotein complexes as a model to demonstrate DNA sequence specificity and tolerance of composite factor complexity. Traditional and recent assays of protein-DNA interaction are summarized and compared with SSINC. Although SSINC is examined here employing P1 partition nucleoprotein complex as an example of DNA-DNA intermolecular association, universal applications of this methodology to nucleo-protein complex studies can be envisioned.

Cite this paper
Slavcev, R. , Nafissi, N. and Kaur, T. (2012) SSINCC: Simple separation of interacting nucleoprotein complex components. Advances in Biological Chemistry, 2, 146-151. doi: 10.4236/abc.2012.22017.
[1]   Pavski, V. and Le, X.C. (2003) Ultrasensitive protein-DNA binding assays. Current Opinion Biotechnology, 14, 65-73. doi:10.1016/S0958-1669(02)00016-2

[2]   Abeles, A.L., Friedman, S.A. and Austin, S.J. (1985) Partition of unit-copy miniplasmids to daughter cells: III. The DNA sequence and functional organization of the P1 partition region. Journal of Molecular Biology, 185, 261- 272. doi:10.1016/0022-2836(85)90402-4

[3]   Kaer, K., Matlik, K., Metsis, M. and Speek, M. (2008) Combination of native and denaturing PAGE for the detection of protein binding regions in long fragments of genomic DNA. BMC Genomics, 9, 272.

[4]   Funnell, B.E. (1991) The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. The Journal of Biological Chemistry, 266, 14328-14337.

[5]   Davis, M.A. and Austin, S.J. (1988) Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. The EMBO Journal, 7, 1881-1888.

[6]   Funnell, B.E. and Gagnier, L. (1993) The P1 plasmid partition complex at parS. II. Analysis of ParB protein binding activity and specificity. The Journal of Biological Chemistry, 268, 3616-3624.

[7]   Funnell, B.E. (1988) Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proceedings of the National Academy of Sciences USA, 85, 6657-6661. doi:10.1073/pnas.85.18.6657

[8]   Davis, M.A., Martin, K.A. and Austin, S.J. (1992) Biochemical activities of the ParA partition protein of the P1 plasmid. Molecular Microbiology, 6, 1141-1147. doi:10.1111/j.1365-2958.1992.tb01552.x

[9]   Surtees, J.A. and Funnell, B.E. (1999) P1 ParB domain structure includes two independent multimerization domains. Journal of Bacteri-ology, 181, 5898-5908.

[10]   Kaur, T., Al Abdallah, Q., Nafissi, N., Wettig, S., Funnell, B.E. and Slavcev, R.A. (2011) ParAB-mediated intermolecular association of plasmid P1 parS sites. Virology, 421, 192-201. doi:10.1016/j.virol.2011.09.027

[11]   Rodionov, O., Lobocka, M. and Yarmolinsky, M. (1999) Silencing of genes flanking the P1 plasmid centromere. Science, 283, 546-549. doi:10.1126/science.283.5401.546

[12]   Rodionov, O. and Yarmolinsky, M. (2004) Plasmid partitioning and the spreading of P1 partition protein ParB. Molecular Microbiology, 52, 1215-1223. doi:10.1111/j.1365-2958.2004.04055.x

[13]   Helwa, R. and Hoheisel, J.D. (2010) Analysis of DNA- protein interactions: from nitrocellulose filter binding assays to microarray studies. Analytical and Bioanalytical Chemistry, 398, 2551-2561.

[14]   Zhang, J.-B., Pan, Z.-X., Lin, F., Ma, X.-S. and Liu, H.-L. (2009) Biochemical methods for the analysis of DNA- protein interactions. Hereditas, 31, 325-336. doi:10.3724/SP.J.1005.2009.00325

[15]   Fried, M. and Croth-ers, D.M. (1981) Equilibria and kinetics of lac repres-sor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Research, 9, 6505-6525. doi:10.1093/nar/9.23.6505

[16]   Drew, H.R. (1984) Structural specificities of five commonly used DNA nucleases. Journal of Molecular Biology, 176, 535-557. doi:10.1016/0022-2836(84)90176-1

[17]   Reimer, J.J. and Turck, F. (2010) Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods. Methods in Molecular Biology, 631, 139-160.

[18]   Pascual-Ahuir, A. and Proft, M. (2012) Quantification of protein-DNA interactions by in vivo chromatin immunopre-cipitation in yeast. Methods in Molecular Biology, 809, 149-156.

[19]   Li, M.L., Wang, W. and Lu, Z.H. (2010) Ge-nomic analysis of DNA-protein interaction by chromatin im-munoprecipitation. Hereditas, 32, 219-228. doi:10.3724/SP.J.1005.2010.00219

[20]   Favicchio, R., Dragan, A.I., Kneale, G..G.. and Read, C.M. (2009) Fluorescence spec-troscopy and anisotropy in the analysis of DNA-protein interactions. Methods in Molecular Biology, 543, 589-611. doi:10.1007/978-1-60327-015-1_35

[21]   Lundblad, J.R., Laurance, M. and Goodman, R.H. (1996) Fluorescence polari-zation analysis of protein-DNA and protein-protein interactions. Molecular Endocrinology, 10, 607-612. doi:10.1210/me.10.6.607

[22]   McDonnell, J.M. (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Current Opinion Chemical Biology, 5, 572-577. doi:10.1016/S1367-5931(00)00251-9

[23]   Stockley, P.G. and Persson, B. (2009) Surface plasmon resonance assays of DNA-protein interactions. Methods in Molecular Biology, 543, 653-669.

[24]   Brand, L.H., Kirchler, T., Hummel, S., Chaban, C. and Wanke, D. (2010) DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. Plant Methods, 6, 25. doi:10.1186/1746-4811-6-25