ABC  Vol.2 No.2 , May 2012
Apoptosis-inducing activity of endocrine-disrupting chemicals in cultured PC12 cells
Abstract: Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recently, several reports have indicated that EDCs can affect the developing central nervous system. In our current study, we report that some EDCs induce apoptosis in cultured PC12 cells and can be classified into three groups. Bisphenol A (BPA), p-nonylphenol (NP) and tributyltin chloride (TBT) were found to induce endoplasmic reticulum (ER) stress-associated apoptosis and activate the unfolded protein response (UPR) system, whereas benomyl (beno) induced non-ER stress-associated apoptosis. The half-maximal apoptosis-inducing concentrations (IC50) of these EDCs were 160 μM for BPA, 25.6 μM for NP, 640 nM for TBT and 48 μM for beno. Although these concentrations are higher than those found in the environment, some EDCs may have apoptotic effects on various cells in the body, including neurons, through their accumulation in the body over time or condensation through the food chain. On the other hand, benzopyrene, fenvalerate, styrene monomer and bis(2-ethylhexyl)phthalate did not induce apoptosis in PC12 cells. We analyzed also whether apoptosis-inducing EDCs had an estrogen-like effect on cultured PC12 cells transfected with a luciferase reporter plasmid, the activity of which is dependent on estrogen receptor α. We found that BPA had an estrogen-like effect (EC50 = 5.9 μM) but that NP, TBT and beno did not in transfected PC12 cells. These results suggest that BPA may predomi-nantly exert estrogenic effects, but others may pre-dominantly have apoptosis-inducing effects on cells in the body exposed to a polluted environment.
Cite this paper: Sasaya, H. , Yasuzumi, K. , Maruoka, H. , Fujita, A. , Kato, Y. , Waki, T. , Shimoke, K. and Ikeuchi, T. (2012) Apoptosis-inducing activity of endocrine-disrupting chemicals in cultured PC12 cells. Advances in Biological Chemistry, 2, 92-105. doi: 10.4236/abc.2012.22012.

[1]   Crisp, T.M., Clegg, E.D. and Cooper, R.L., et al. (1998) Environmental endocrine disruption: an effects assessment and analysis. Environmental Health Perspectives, 106, 11-56.

[2]   Newbold, R.R., Hanson, R.B. and Jefferson, W.N., et al. (2000) Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to dieth-ylstilbestrol. Carcinogenesis, 21, 1355-1363. doi:10.1093/carcin/21.7.1355

[3]   Kusunoki, T., Shimoke, K. and Komatsubara, S., et al. (2008) p-Nonylphenol induces endo-plasmic reticulum stress-mediated apoptosis in neuronally differ-entiated PC12 cells. Neuroscience Letters, 431, 256-261. doi:10.1016/j.neulet.2007.11.058

[4]   Gass, J.N., Jiang, H.Y. and Wek, R.C., et al. (2008) The unfolded protein response of B-lymphocytes: PERK-independent development of anti-body-secreting cells. Molecular Immunology, 45, 1035-1043. doi:10.1016/j.molimm.2007.07.029

[5]   Lipson, K.L., Fonseca, S.G. and Ishigaki, S., et al. (2006) Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic re-ticulum-resident protein kinase IRE1. Cell Metabolism, 4, 245-254. doi:10.1016/j.cmet.2006.07.007

[6]   Bertolotti, A., Zhang, Y. and Hendershot, L.M., et al. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2, 326-332. doi:10.1038/35014014

[7]   Ye, J., Rawson, R.B. and Komuro, R., et al. (2000) ER stress induces cleavage of mem-brane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6, 1355-1364. doi:10.1016/S1097-2765(00)00133-7

[8]   Kanekura, K., Su-zuki, H. and Aiso, S., et al. (2009) ER stress and unfolded protein response in amyotrophic lateral sclerosis. Molecular Neu-robiology, 39, 81-89. doi:10.1007/s12035-009-8054-3

[9]   Talmage, D.A. and Lis-terud, M. (1994) Retinoic acid suppresses polyoma virus transformation by inhibiting transcription of the c-fos proto-oncogene. Oncogene, 9, 3557-3563.

[10]   Sakamoto, H., Mezaki, Y. and Shikimi, H., et al. (2003) Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology, 144, 4466-4477. doi:10.1210/en.2003-0307

[11]   Hiroi, T., Okada, K. and Ima-oka, S., et al. (2006) Bisphenol A binds to protein disulfide isomerase and inhibits its enzymatic and hormone-binding activities. Endocrinology, 147, 2773-2780. doi:10.1210/en.2005-1235

[12]   Okada, Y., Oyama, Y. and Chikahisa, L., et al. (2000) Tri- n-butyltin-induced change in cellular level of glutathione in rat thymocytes: A flow cytomet-ric study. Toxicology Letters, 117, 123-128. doi:10.1016/S0378-4274(00)00237-X

[13]   Antizar-Ladislao, B. (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International, 34, 292-308. doi:10.1016/j.envint.2007.09.005

[14]   Gardiner, J.A., Kirkland, J.J. and Klopping, H.L., et al. (1974) Fate of benomyl in animals. Journal of Agricultural and Food Chemistry, 22, 419-427. doi:10.1021/jf60193a046

[15]   Lim, J. and Miller, M.G. (1997) The role of the benomyl metabolite carbendazim in beno-myl-induced testicular toxicity. Toxicology and Applied Pharma-cology, 142, 401- 410. doi:10.1006/taap.1996.8042

[16]   Zbozinek, J.V. (1984) Environmental transformations of DPA, SOPP, benomyl, and TBZ. Residue Reviews, 92, 113-155.

[17]   Lavy, T.L., Mattice, J.D. and Massey, J.H., et al. (1993) Measurements of year-long exposure to tree nursery workers using multiple pesticides. Archives of Environmental Contamination and Toxicology, 24, 123-144. doi:10.1007/BF01141339

[18]   Davidse, L.C. and Flach, W. (1977) Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. Journal of Cell Biology, 72, 174-193. doi:10.1083/jcb.72.1.174

[19]   Laskey, J.W., Rehnberg, G.L. and Hein, J.F., et al. (1982) Effects of chronic manganese (Mn3O4) exposure on selected reproductive parameters in rats. Journal of Toxicology and Environmental Health, 9, 677-687. doi:10.1080/15287398209530195

[20]   Barnes, T.B., Ver-langieri, A.J. and Wilson, M.C. (1983) Reproductive toxicity of methyl-1-(butylcarbamoyl)-2- benzimidazole carbamate (be-nomyl) in male Wistar rats. Toxicology, 28, 103-115. doi:10.1016/0300-483X(83)90110-5

[21]   Linder, R.E., Rehnberg, G.L. and Strader, L.F., et al. (1988) Evaluation of reproductive parameters in adult male Wistar rats after subchronic exposure (gavage) to benomyl. Journal of Toxicology and Environmental Health, 25, 285-298. doi:10.1080/15287398809531210

[22]   Hess, R.A., Moore, B.J. and Forrer, J., et al. (1991) The fungicide benomyl (methyl 1-(butylcarbamoyl)-2-benzi- mi-dazolecarbamate) causes tes-ticular dysfunction by inducing the sloughing of germ cells and occlusion of efferent ductules. Fundamental and Applied Toxi-cology, 17, 733-745. doi:10.1016/0272-0590(91)90181-3

[23]   Klotz, D.M., Beck-man, B.S. and Hill, S.M., et al. (1996) Identification of envi-ronmental chemicals with estrogenic activity using a combination of in vitro assays. Environmental Health Perspectives, 104, 1084-1089. doi:10.1289/ehp.961041084

[24]   Yamada, T., Sumida, K. and Saito, K., et al. (2005) Functional genomics may allow accurate categorization of the benzimidazole fungicide benomyl: Lack of ability to act via steroid-receptor-mediated mechanisms. Toxi-cology and Applied Pharmacology, 205, 11-30. doi:10.1016/j.taap.2004.09.002

[25]   Vig, B.K., Yoo, H.J. and Schiffmann, D. (1991) Kinetochore proteins, peripheral loca-tion of chromosomes and nuclear budding: Another look at the genesis of aneuploidy, Mutagenesis, 6, 361-367. doi:10.1093/mutage/6.5.361

[26]   Hewitt, M.J., Mutch, P. and Pratten, M.K. (2005) Potential teratogenic effects of benomyl in rat embryos cultured in vitro. Reproductive Toxicology, 20, 271-280. doi:10.1016/j.reprotox.2005.02.003

[27]   Lee, K.M., Yang, W. and Rhee, J.S., et al. (2010) Effects of endocrine disruptors on Bombina orientalis P450 aromatase activity. Zoological Science, 27, 338-343. doi:10.2108/zsj.27.338

[28]   Sasaya, H., Utsumi, T. and Shi-moke, K., et al. (2008) Ni- cotine suppresses tunicamy-cin-induced, but not thapsigar- gin-induced, expression of GRP78 during ER stress-mediated apoptosis in PC12 cells. Journal of Biochemistry, 144, 251-257. doi:10.1093/jb/mvn063

[29]   Jung-Testas, I. and Baulieu, E.E. (1998) Steroid hormone receptors and steroid action in rat glial cells of the central and peripheral nervous system. Journal of Steroid Biochemistry and Molecular Biology, 65, 243-251. doi:10.1016/S0960-0760(97)00191-X

[30]   McEwen, B. (2002) Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57, 357-384. doi:10.1210/rp.57.1.357

[31]   Pretorius, E. and Bornman, M.S. (2005) Calcium-mediated aponecrosis plays a central role in the pathogenesis of estrogenic chemical-induced neurotoxicity. Medical Hympothese, 65, 893-904. doi:10.1016/j.mehy.2005.03.032

[32]   Nakagawa, T., Zhu, H. and Morishima, N., et al. (2000) Caspase-12 mediates endoplas-mic-reticulum-specific apoptosis and cytotoxicity by amy-loid-beta. Nature, 403, 98- 103. doi:10.1038/47513

[33]   Danial, N.N. (2007) BCL-2 family proteins: Critical checkpoints of apoptotic cell death. Clinical Cancer Research, 13, 7254-7263. doi:10.1158/1078-0432.CCR-07-1598

[34]   Young, C., Klocke, B.J. and Tenkova, T., et al. (2003) Ethanol-induced neuronal apoptosis in vivo requires BAX in the developing mouse brain. Cell Death and Differentiation, 10, 1148-1155. doi:10.1038/sj.cdd.4401277

[35]   Akhtar, R.S., Ness, J.M. and Roth, K.A. (2004) Bcl-2 family regulation of neuronal development and neurodegeneration. Biochimica et Biophysica Acta, 1644, 189-203. doi:10.1016/j.bbamcr.2003.10.013

[36]   Kuwana, T., Bouch-ier-Hayes, L. and Chipuk, J.E., et al. (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mito-chondrial membrane permeabilization both directly and indirectly. Molecular Cell, 17, 525-535. doi:10.1016/j.molcel.2005.02.003

[37]   Willis, S.N., Fletcher, J.I. and Kaufmann, T., et al. (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 315, 856-859. doi:10.1126/science.1133289

[38]   Chipuk, J.E., Fisher, J.C. and Dillon, C.P., et al. (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proceedings of the National Academy of Sciences of the United States of America, 105, 20327-20332. doi:10.1073/pnas.0808036105

[39]   Ming, L., Wang, P. and Bank, A., et al. (2006) PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells. Journal of Biological Chemistry, 281, 16034-16042. doi:10.1074/jbc.M513587200

[40]   Yu, J. and Zhang, L. (2008) PUMA, a potent killer with or without p53. Oncogene, 27, 71-83. doi:10.1038/onc.2009.45

[41]   Reimertz, C., Kogel, D. and Rami, A., et al. (2003) Gene expression during ER stress-induced apoptosis in neurons: Induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apop-tosis pathway. Journal of Cell Biology, 162, 587-597. doi:10.1083/jcb.200305149

[42]   Ward, M.W., Kogel, D. and Prehn, J.H. (2004) Neuronal apoptosis: BH3-only proteins the real killers? Journal of Bioenergetics and Biomembranes, 36, 295-298. doi:10.1023/B:JOBB.0000041756.23918.11

[43]   Futami, T., Miyagishi, M. and Taira, K. (2005) Identification of a network involved in thapsigargin-induced apoptosis using a library of small interfering RNA expression vectors. Journal of Cell Biology, 280, 826-831.

[44]   Luo, X., He, Q. and Huang, Y., et al. (2005) Transcriptional upregulation of PUMA modulates endo-plasmic reticulum calcium pool depletion-induced apoptosis via Bax activation. Cell Death & Differentiation, 12, 1310- 1318. doi:10.1038/sj.cdd.4401659

[45]   Jiang, C.C., Lucas, K. and Avery-Kiejda, K.A., et al. (2008) Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress. Cancer Research, 68, 6708-6717. doi:10.1158/0008-5472.CAN-08-0349

[46]   Nickson, P., Toth, A. and Erhardt, P. (2007) PUMA is cri- tical for neonatal cardiomyocyte apoptosis induced by en- doplasmic reticulum stress. Cardiovascular Research, 73, 48-56. doi:10.1016/j.cardiores.2006.10.001

[47]   Li, J., Lee, B. and Lee, A.S. (2006) Endoplasmic reticulum stress-induced apop-tosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. Journal of Cell Biology, 281, 7260- 7270.

[48]   Zou, C.G., Cao, X.Z. and Zhao, Y.S., et al. (2009) The molecular mechanism of endo-plasmic reticulum stress- induced apoptosis in PC-12 neuronal cells: The protective effect of insulin-like growth factor I. En-docrinology, 150, 277-285. doi:10.1210/en.2008-0794

[49]   Puthalakath, H., O’Reilly, L.A. and Gunn, P., et al. (2007) ER stress triggers apoptosis by acti-vating BH3-only protein Bim. Cell, 129, 1337-1349. doi:10.1016/j.cell.2007.04.027

[50]   Hetz, C., Thielen, P. and Fisher, J., et al. (2007) The proa- poptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. Cell Death & Differentiation, 14, 1386-1389. doi:10.1038/sj.cdd.4402166

[51]   Kieran, D., Woods, I. and Villunger, A., et al. (2007) Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 20606-20611. doi:10.1073/pnas.0707906105

[52]   Ward, C.L. and Kopito, R.R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. Journal of Biological Chemistry, 269, 25710-25718.

[53]   Kerbiriou, M., Teng, L. and Benz, N., et al. (2009) The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells. PLoS One, 4, e8431-8436. doi:10.1371/journal.pone.0008436

[54]   Kerbiriou, M., Le Drevo, M.A. and Ferec, C., et al. (2007) Coupling cys-tic fibrosis to endoplasmic reticulum stress: Differential role of Grp78 and ATF6. Biochimica et Biophysica Acta, 1772, 1236-1249.

[55]   Rao, R.V. and Bredesen, D.E. (2004) Mis-folded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology, 16, 653-662. doi:10.1016/

[56]   Kurosawa, T., Hiroi, H. and Tsutsumi, O., et al. (2002) The activity of bisphenol A depends on both the estrogen receptor subtype and the cell type. Endocrine Journal, 49, 465-471. doi:10.1507/endocrj.49.465

[57]   Kuiper, G.G., Lemmen, J.G. and Carlsson, B., et al. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocri-nology, 139, 4252- 4263. doi:10.1210/en.139.10.4252

[58]   Gould, J.C., Leonard, L.S. and Maness, S.C., et al. (1998) Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Molecular and Cellular Endocrinology, 142, 203-214. doi:10.1016/S0303-7207(98)00084-7

[59]   Iso, T., Watanabe, T. and Iwamoto, T., et al. (2006) DNA damage caused by bisphe-nol A and estradiol through estrogenic activity. Biological and Pharmaceutical Bulletin, 29, 206-210. doi:10.1248/bpb.29.206

[60]   Shioda, T., Chesnes, J. and Coser, K.R., et al. (2006) Importance of dosage standardization for interpreting transcriptomal signature profiles: Evidence from studies of xenoestrogens. Proceedings of the National Academy of Sciences of the United States of America, 103, 12033- 12038. doi:10.1073/pnas.0605341103

[61]   Tando, S., Itoh, K. and Yaoi, T., et al. (2007) Effects of pre- and neonatal exposure to bisphenol A on murine brain development. Brain and Develop-ment, 29, 352-356. doi:10.1016/j.braindev.2006.10.003

[62]   Viviani, B., Rossi, A.D. and Chow, S.C., et al. (1995) Organotin compounds induce calcium overload and apoptosis in PC12 cells. Neurotoxi-cology, 16, 19-25.

[63]   Mizuhashi, S., Ikegaya, Y. and Matsuki, N. (2000) Cytotoxicity of tributyltin in rat hippocampal slice cul-tures. Neuroscience Research, 38, 35-42. doi:10.1016/S0168-0102(00)00137-1

[64]   Nakatsu, Y., Kotake, Y. and Ohta, S. (2006) Tributyltin- induced cell death is mediated by calpain in PC12 cells. Neurotoxicology, 27, 587-593. doi:10.1016/j.neuro.2006.03.010

[65]   Gennari, A., Viviani, B. and Galli, C.L., et al. (2000) Organotins induce apoptosis by disturbance of [Ca(2+)](i) and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxi-cology and Applied Pharmacology. 169, 185-190. doi:10.1006/taap.2000.9076

[66]   Unno, T., Iida, R. and Okawa, M., et al. (2009) Tributyl- tin-induced Ca(2+) mobilization via L-type voltage-dependent Ca(2+) channels in PC12 cells. Environmental Toxicology and Pharmacology, 28, 70-77. doi:10.1016/j.etap.2009.02.006

[67]   Lee, P.C. (1998) Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endo-crine, 9, 105-111. doi:10.1385/ENDO:9:1:105

[68]   Yokosuka, M., Ohtani-Kaneko, R. and Yamashita, K., et al. (2008) Estrogen and environmental estrogenic chemicals exert developmental effects on rat hypothalamic neu- rons and glias. Toxicology in Vitro, 22, 1-9. doi:10.1016/j.tiv.2007.07.003

[69]   Dutar, P., Bassant, M.H. and Senut, M.C., et al. (1995) The septohippocampal pathway: structure and function of a central cholinergic system. Physio-logical Reviews, 75, 393-427.

[70]   Miyamoto, M., Kato, J. and Narumi, S., et al. (1987) Characteristics of memory impairment following lesioning of the basal forebrain and medial septal nu-cleus in rats. Brain Research, 419, 19-31. doi:10.1016/0006-8993(87)90564-6

[71]   Miyagawa, K., Na-rita, M. and Akama, H., et al. (2007) Memory impairment as-sociated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphe-nol-A. Neuroscience Letters, 418, 236-241. doi:10.1016/j.neulet.2007.01.088

[72]   Midoro-Horiuti, T., Ti-wari, R. and Watson, C.S., et al. (2010) Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environmental Health Perspective, 118, 273-277. doi:10.1289/ehp.0901259