AJMB  Vol.2 No.2 , April 2012
Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation
Abstract: Disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) isozyme systems, manifested by the excessive NO and prostaglandin (PGE2) generation, are well-recognized features of gastric mucosal inflammatory responses to H. pylori infection. In this study, we report that H. pylori LPS-induced enhancement in gastric mucosal inducible (i) iNOS expression and COX-2 activation was accompanied by the impairment in constitutive (c) cNOS phosphorylation, up-regulation in the inhibitory κB kinase-β (IKKβ) activation and the increase in the transcriptional factor, NF-κB, nuclear translocation. Further, we show that abrogation of cNOS control over NF-κB activation has lead to induction of iNOS expression and COX-2 activation through S-nitrosylation. Moreover, we demonstrate that the modulatory effect of peptide hormone, ghrelin, on the LPS-induced changes was reflected in the increase in Src/Akt-dependent cNOS activation through phosphorylation and the suppression of IKK-β activity through cNOS-mediated IKK-β protein S-nitrosylation. As a result, ghrelin exerted the inhibitory effect on NF-κB nuclear translocation, thus causing the repression of iNOS gene induction and the inhibition in COX-2 activation through iNOS-dependent S-nitrosylation. Our findings point to cNOS activation as a pivotal element in the signaling cascade by which ghrelin exerts modulatory control over proinflammatory events triggered in gastric mucosa by H. pylori infection.
Cite this paper: Slomiany, B. and Slomiany, A. (2012) Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation. American Journal of Molecular Biology, 2, 113-123. doi: 10.4236/ajmb.2012.22013.

[1]   Romano, M., Ricci, V., Memoli, A., et al. (1998) Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. Journal of Biological Chemistry, 273, 28560-285663. doi:10.1074/jbc.273.44.28560

[2]   Fu, S., Ramanujam, K.S., Wong, A., et al. (1999) Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase-2 in Helicobacter pylori gastritis. Gastroenterology, 116, 1319-1329. doi:10.1016/S0016-5085(99)70496-8

[3]   Slomiany, B.L. and Slomiany, A. (2002) Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide by peroxisome proliferator-activated receptor ?γ activation. IUBMB Life, 53, 303-308. doi:10.1080/15216540213459

[4]   Reider, G., Hofmann, J.A., Hatz, R.A., Stolte, M. and Enders, G.A. (2003) Up-regulation of inducible nitric oxide synthase in Helicobacter pylori-associated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. International Journal of Medical Microbiology, 293, 403-412. doi:10.1078/1438-4221-00280

[5]   Wilson, K.T., Fu, S., Ramanujam, K.S. and Meltzer, S.J. (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Research, 58, 2929-2934.

[6]   Wroblewski, L.A., Peek, R.M. and Wilson, K.T. (2010) Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clinical microbiology Review, 23, 713-739. doi:10.1128/CMR.00011-10

[7]   Clancy, R., Varenika, B., Huang, W., et al. (2000) Nitric oxide synthase/COX cross-talk: Nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. Journal of Immunology, 165, 1582-1587.

[8]   Cuzzocrea, S. and Salvemini, D. (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney International, 71, 290-297. doi:10.1038/

[9]   Kim, S.F., Huri, D.A. and Snyder, S.H. (2005) Inducible nitric oxide synthase binds, s-nitrosylates, and activates cyclooxygenase-2. Science, 310, 1966-1970. doi:10.1126/science.1119407

[10]   Ye, Y., Martinez, J.D., Perez-Polo, R.J., Lin, Y., Uretsky, B.F. and Birnbaum, Y. (2008) The role of eNOS, iNOS, and NF-κB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastin. American Journal of Physiology Heart and Circulatory Physiology, 295, H343-H351. doi:10.1152/ajpheart.01350.2007

[11]   Marnett, L.J., Wright, T.L., Crews, B.C., Tannenbaum, S.R. and Morrow, J.D. (2000) Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric-oxide synthase. Journal of Biological Chemistry, 275, 13427-13430. doi:10.1074/jbc.275.18.13427

[12]   Lamon, B.D., Upmacis, R.K., Deeb, R.S., Koyuncu, H. and Haijar, D. (2010) Inducible nitric oxide synthase gene deletion exaggerates MAPK-mediated cyclooxy-genase-2 induction by inflammatory stimuli. American Journal of Physiology Heart and Circulatory Physiology, 299, H613H623. doi:10.1152/ajpheart.00144.2010

[13]   Bell, R.M., Smith, C.C. and Yellon, D.M. (2002) Nitric oxide as a mediator of delayed pharmacological (A1 receptor triggered) preconditioning; is eNOS masquerading as iNOS?. Cardiovascular Research, 53, 405-413. doi:10.1016/S0008-6363(01)00472-2

[14]   Slomiany, B.L. and Slomiany, A. (2011) Helicobacter pylori induces disturbances in gastric mucosal Akt activetion through inducible nitric oxide synthase-dependent S-nitrosylation: Effect of ghrelin. ISRN Gastroenterology, 2011, 8 p. doi:10.5402/2011/308727

[15]   Slomiany, B.L. and Slomiany, A. (2011) Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology, 19, 197-204.

[16]   Slomiany, B.L. and Slomiany, A. (2011) Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 activation through S-nitrosylation: Mechanism of ghrelin action. Open Journal of Gastroenterology, 1, 13-22.

[17]   Joo, M., Wright, J.G.., Hu, N.N., et al. (2007) Yin yang 1 enhances cyclooxygenase-2 gene expression in macrophages. American Journal of Physiology Lung and Cell Molecular Physiology, 292, L1219-1226. doi:10.1152/ajplung.00474.2006

[18]   Grishin, A.V., Wang, J., Potoka, D.A., et al. (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. Journal of Immunology, 176, 580-588.

[19]   Korhonen, R., Lahti, A., Kankaanrata, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Current Drug Targets: Inflammation and Allergy, 4, 471-479. doi:10.2174/1568010054526359

[20]   Cho, I. and Kim, S.G. (2009) A novel mito-gen-activated protein kinase phosphatase-1 and gluco-corticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Molecular Endocrinology, 23, 86-99. doi:10.1210/me.2008-0257

[21]   Kang, Y.J., Wingerd, B.A., Arakawa, T. and Smith, W.L. (2006) Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. Journal of Immunology, 177, 8111-8122.

[22]   Kojima, M., Hosoda, H., Date, Y., Nakazato, M. and Kangawa, K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656-660. doi:10.1038/45230

[23]   Sibilia, V., Pagani, F., Rindi, G., et al. (2008) Central ghrelin gastroprotection involves nitric oxide/prostaglandin cross-talk. British Journal of Pharmacology, 154, 688-697. doi:10.1038/bjp.2008.120

[24]   Xu, X., Jhun, B.S., Ha, C.H. and Jin, Z.G. (2008) Molecular mechanisms of ghrelin-mediated endothelial nitricoxide synthase activation. Endocrinology, 149, 4183-4192. doi:10.1210/en.2008-0255

[25]   Chen, Y.T., Tsai, S.H., Sheu, S. Y. and Tsai, L.H. (2010) Ghrelin improves LPS- induced gastrointestinal mobility disturbances: Role of NO and prostaglandin E2. Shock, 33, 205-212. doi:10.1097/SHK.0b013e3181ae841b

[26]   Kang, K.W., Choi, S.Y., Cho, M.K., Lee, C.C. and Kim, S.G. (2003) Thrombin induces nitric-oxide synthase via Ga12/13-coupled protein kinase C-dependent I-κBa phosphorylation and JNK-mediated I-κBa degradation. Journal of Biological Chemistry, 278, 17368-17378. doi:10.1074/jbc.M300471200

[27]   Noha, S.M., Atanasov, A.G.., Schuster, D., et al. (2011) Discovery of a novel IKK-β inhibitor by ligand-based virtual screening techniques. Bioorganic and Medicinal Chemistry Letters, 21, 577-583. doi:10.1016/j.bmcl.2010.10.051

[28]   Jaffrey, S.R., Erdjument-Bromage, H., Ferris, D., Tempst, P. and Snyder, S.H. (2001) Protein S-nitrosylation: A physicological signal for neuronal nitric acid. Nature Cell Biology, 3, 193-197. doi:10.1038/35055104

[29]   Forrester, M.T., Foster, M.W. and Stamler, J.S. (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. Journal of Biological Chemistry, 282, 13977-13983. doi:10.1074/jbc.M609684200

[30]   Singh, K., Chaturvedi, R., Asim, M., Barry, D.P., Lewis, N.D., Vitek, M.P. and Wilson, K.T. (2008) The apolipoprotein e-mimetic peptide COG112 inhibits the inflammatory response to Citrobacter rodentium in colonic epithelial cells by preventing NF-κB activation. Journal of Biological Chemistry, 283, 16752-16761. doi:10.1074/jbc.M710530200

[31]   Tanaka, H., Fujita, N. and Tsuruo, T. (2005) 3-Phosphoinositide-dependent protein kinase-1-mediated IκΒ Kinase β (IKKβ) phosphorylation activates NF-κΒ signaling. Journal of Biological Chemistry, 280, 40965-40973. doi:10.1074/jbc.M506235200

[32]   Kang, J.L., Lee, H.W., Kim, H.J., Lee, H.S., Castranova, V., Lim, C.M. and Koh, Y. (2005) Inhibition of src tyrosine kinase suppresses activation of nuclear factor-κB, and serine and tyrosine phosphorylation of IκΒ-α in lipopolysaccharide-stimulated Raw 264.7 macrophages. Journal of Toxicology and Environmental Health, Part A, 68, 1643-1662. doi:10.1080/15287390500192114

[33]   Gupta, S.C., Prasad, S. Reuter, S., et al. (2010) Modification of cysteine 179 of IκBa kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. Journal of Biological Chemistry, 285, 35406-35417. doi:10.1074/jbc.M110.161984

[34]   Brandt, S., Kwok, T., Harting, R., Konig, W. and Backert, S. (2005) NF-κΒ activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proceedings of the National Academy of Sciences of the USA, 102, 9300-9305. doi:10.1073/pnas.0409873102

[35]   Backert, S. and Neumann, M. (2010) What a disorder: Proinflammatory signaling pathways induced by Helicobacter pylori. Trends in Microbiology, 18, 479-486. doi:10.1016/j.tim.2010.08.003

[36]   Rieke, C., Papendieck, A., Sokolova, O. and Naumann, M. (2011) Helicobacterpylori-induced tyrosine pho-sphorylation of IKkβ contributes to NF-κΒ activation. Biological Chemistry, 392, 387-393. doi:10.1515/bc.2011.029

[37]   Haynes, M.P., Li, L., Sinha, D., et al. (2003) Src kinase mediates phosphatidylinositol 3-kinsae/Akt-dependent rapid endothelial nitric oxide synthase activation by ghrelin. Journal of Biological Chemistry, 278, 2118-2123. doi:10.1074/jbc.M210828200

[38]   Lodeiro, P., Theodoropoulou, M., Pardo, M., Casanueva, F.F. and Camina, J.P. (2009) c-Src regulates Akt signaling in response to ghrelin via b-arrestin signaling-independent and-dependent mechanism. PLoS ONE, 4, e4686.

[39]   Yu, S.M., Wu, J.F., Lin, T.L. and Kuo, S.C. (1997) Inhibition of nitric oxide synthase expression by PPM-18, a novel anti-inflammatory agent, in vitro and in vivo. Biochemical Journal, 328, 363-369.

[40]   Mori, N., Yamada, Y., Ikeda, S., et al. (2002) Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 100, 1828-1834. doi:10.1182/blood-2002-01-0151

[41]   Slomiany, B.L. and Slomiany, A. (2011) Ghrelin suppression of Helicobacter pylori-induced gastric mucosal expression of iNOS is mediated through the inhibition of KKK-β activation by cNOS-dependent S-nitrosylation. Open Journal of Cell Biology, 1, 1-10. doi:10.4236/ojcb.2011.11001

[42]   Reynaert, N.L., Ckless, K., Korn, S.H., et al. (2004) Nitric oxide represses inhibitory κΒ kinase through S-nitrosylation. Proceedings National Academy of Sciences of the USA, 101, 8945-8950. doi:10.1073/pnas.0400588101

[43]   Marshall, H.E., Hess, D.T. and Stamler, J.S. (2004) S-nitrosylation: Physiological regulation of NF-κΒ. Proceedings of the National Academy of Sciences of the USA, 101, 8841-8842. doi:10.1073/pnas.0403034101

[44]   Perkins, N.D. (2007) Integrating cell-signalling pathways with NF-κΒ and IKK function. Nature Review Molecular Cell Biology, 8, 49-62. doi:10.1038/nrm2083