Some New Exact Traveling Wave Solutions for the Generalized Benney-Luke (GBL) Equation with Any Order

Show more

References

[1] M. J. Ablowitz and P. A. Clarkson, “Solution, Nonlinearn Evolution Equations and Inverse Scateing,” Cambridge University Press, Cambridge, 1991.
doi:10.1017/CBO9780511623998

[2] M. Wadati, “Wave Propagation in Nonlinear Lattice. I,” Journal of the Physical Society of Japan, Vol. 38, No. 3, 1975, pp. 673-680. doi:10.1143/JPSJ.38.673

[3] M. Wadati, H. Sanuki and K. Konno, “A Generalization of Inverse Scattering Method,” Journal of the Physical Society of Japan, Vol. 46, No. 6, 1975, pp. 1965-1966.
doi:10.1143/JPSJ.46.1965

[4] V. B. Matveev and M. A. Salle, “Darboux Transformation and Solitons,” Springer, Berlin, 1991.

[5] C. H. Gu, H. S. Hu and Z. X. Zhou, “Darboux Transformation in Solition Thory and Its Geometric Applications,” Shanghai Scientific & Techincal Publishers, Shanghai, 1999.

[6] C. Rogers and W. K. Schief, “B?cklund and Darboux Transformation, Geometry and Modern Application in Soliton,” Cambridge University Press, Cambridge, 2002.
doi:10.1017/CBO9780511606359

[7] R. Hirota, “The Direct Method in Soliton Theroy,” Cambridge University Press, Cambidge, 2004.

[8] P. J. Olver, “Applications of Lie Groups to Differential Equations,” Springer, New York, 1993.
doi:10.1007/978-1-4612-4350-2

[9] G. W. Bluman and S. Kumei “Symmetries and Differential Equations,” Springer, Berlin, 1989.

[10] J. R. Quintero, “Solitons and Periodic Traveling Waves for the 2D-Generalized Benney-Luke Equation,” Applicable Analysis, Vol. 86, No. 3, 2007, pp. 331-351.
doi:10.1080/00036810601152390