WJM  Vol.2 No.2 , April 2012
Analysis of Lattice Size, Energy Density and Denaturation for a One-Dimensional DNA Model
Abstract: There are several mechanical models to describe the DNA phenomenology. In this work the DNA denaturation is studied under thermodynamical and dynamical point of view using the well known Peyrard-Bishop model. The thermodynamics analysis using the transfer integral operator method is briefly reviewed. In particular, the lattice size is discussed and a conjecture about the minimum energy to denaturation is proposed. In terms of the dynamical aspects of the model, the equations of motion for the system are integrated and the results determine the energy density where the denatura- tion occurs. The behavior of the lattice near the phase transition is analyzed. The relation between the thermodynamical and dynamical results is discussed.
Cite this paper: nullG. Slade, N. Ribeiro, E. Filho and J. Ruggiero, "Analysis of Lattice Size, Energy Density and Denaturation for a One-Dimensional DNA Model," World Journal of Mechanics, Vol. 2 No. 2, 2012, pp. 84-89. doi: 10.4236/wjm.2012.22010.

[1]   W. Saenger, “Principles of Nucleic Acid Structure,” Springer-Verlag Press, New York, 1984. doi:10.1007/978-1-4612-5190-3

[2]   G. B. Watson and F. H. Crick, “Molecular Structure of Nucleic Acids—A Structure for Deoxiribose Nucleic Acid,” Nature, Vol. 171, 1953, pp. 737-738. doi:10.1038/171737a0

[3]   L. Yakushevich, “Nonlinear Physics of DNA,” Wiley Series in Nonlinear Science, Chichester, 1998.

[4]   M. Peyrard and A. R. Bishop, “Statistical Mechanics of a Nonlinear Model for DNA Denaturtion,” Physical Review Letters, Vol. 62, No. 23, 1989, pp. 2755-2758. doi:10.1103/PhysRevLett.62.2755

[5]   T. Dauxois, M. Peyrard and A. R. Bishop, “Entropy-driven DNA denaturation,” Physical Review E , Vol. 47, No. 1, 1993, pp. 44-47. doi:10.1103/PhysRevE.47.R44

[6]   M. Joyeux and S. Buyukdagli, “Dynamical Model Based on Finite Stacking Enthalpies for Homogeneous and Inhomogeneous DNA Thermal Denaturation,” Physical Review E, Vol. 72, No. 5, 2005, Article ID: 051902. doi:10.1103/PhysRevE.72.051902

[7]   M. Peyrard, S. Cuesta-López and G. James, “Nonlinear Analysis of the Dynamics of the DNA Breathing,” Journal of Biological Physics, Vol. 35, No. 1, 2009, pp. 73-89. doi:10.1007/s10867-009-9127-2

[8]   E. Zamora-Sillero, A. V. Shapovalov and F. J. Esteban, “Formation, Control, and Dynamics of N Localized Structures in the Peyrard-Bishop Model,” Physical Review E, Vol. 76, No. 6, 2007, Article ID: 066603. doi:10.1103/PhysRevE.76.066603

[9]   S. Zdravkovic and M. V. Sataric, “DNA Dynamics and Big Viscosity,” International Journal of Modern Physics B, Vol. 17, No. 31-32, 2003, pp. 5911-5923. doi:10.1142/S0217979203023513

[10]   J. De Luca, E. Drigo Filho, A. Ponno and J. R. Ruggiero, “Energy Localization in the Peyrard-Bishop DNA Mo- del,” Physical Review E, Vol. 70, No. 2, 2004, Article ID: 026213. doi:10.1103/PhysRevE.70.026213

[11]   M. Peyrard, “Nonlinear Dynamics and Statistical Physics of DNA,” Nonlinearity, Vol. 17, No. 2, 2004, pp. 1-40. doi:10.1088/0951-7715/17/2/R01

[12]   G. Weber, “Sharpe DNA Denaturation Do to Solvent Interaction,” Europhysics Letters, Vol. 73, No. 5, 2006, p. 806. doi:10.1209/epl/i2005-10466-6

[13]   N. F. Ribeiro and E. Drigo Filho, “Using a One-DimenSional Lattice Applied to the Thermodynamic Study of DNA,” Journal of Physics: Conference Series, Vol. 246, 2010, Article ID: 012037. doi:10.1088/1742-6596/246/1/012037

[14]   G. G. Slade, E. Drigo Filho and J. R. Ruggiero, “Stability of Breathres in Simple Mechanical Models for DNA,” Journal of Physics: Conference Series, Vol. 246, 2010, Article ID: 012039. doi:10.1088/1742-6596/246/1/012039

[15]   S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl and A. Litwin, “Nature of the Open State in Long Polynucleotide Double Helix—Possibility of Soliton Excitations,” Proceedings of the National Academy of Sciences, Vol. 77, No. 12, 1980, pp. 7222-7226. doi:10.1073/pnas.77.12.7222

[16]   J. L. Leroy, M. Kochoyan, T. Huynh-Dinh and M. Guéron, “Characterization of Base-Pair Opening in the Deoxynucleotide Duplexes Using Catalyzed Exchange of the Imino Proton,” Journal of Molecular Biology, Vol. 200, No. 2, 1988, pp. 223-238. doi:10.1016/0022-2836(88)90236-7

[17]   M. Peyrard, S. Cuesta-López and D. Angelov, “Experimental and Theoretical Studies of Sequence Effects on the Fluctuation and Melting of Short DNA Molecules,” Journal of Physics: Condesed Matter, Vol. 21, No. 3, 2009, Article ID: 034103. doi:10.1088/0953-8984/21/3/034103

[18]   J. M. Silva, E. Drigo Filho and J. R. Ruggiero, “Localization and Delocalization of Energy in a Peyrard-Bishop Chain,” The European Physical Journal E: Soft Matter and Biological Physics, Vol. 29, No. 2, 2009, pp. 245-251. doi:10.1140/epje/i2009-10475-9

[19]   B. S. Alexandrov, L. T. Wille, K. ?. Rasmussen, A. R. Bishop and K. B. Blagoev, “Bubble Statistics and Dynamics in Double-Stranded DNA,” Physical Review E, Vol. 74, No. 5, 2006, Article ID: 050901. doi:10.1103/PhysRevE.74.050901

[20]   N. Theodorakopoulos, “Thermodynamic Instabilities in One-Dimensional Particle Lattices: A Finite-Size Scaling Approach,” Physical Review E, Vol. 68, No. 2, 2003, Article ID: 026109. doi:10.1103/PhysRevE.68.026109

[21]   S. Buyukdagli and M. Joyeux, “Theoretical Investigation of Finite Size Effects at DNA Melting,” Physical Review E, Vol. 76, No. 2, 2007, Article ID: 021917. doi:10.1103/PhysRevE.76.021917

[22]   D. J. Scalapino and M. Sears, “Statistical Mechanics of One-Dimensional Ginzburg-Landau Fields,” Physical Re- view B, Vol. 6, No. 9, 1972, pp. 3409-3416. doi:10.1103/PhysRevB.6.3409

[23]   G. Chen, “The Exact Solutions of the Schrodinger Equation with the Morse Potential via Laplace Transforms,” Physical Review A, Vol. 326, No. 1-2, 2004, pp. 55-57. doi:10.1016/j.physleta.2004.04.029

[24]   E. D. Filho and R. M. Ricotta, “Morse Potential Energy Spectra through the Variational Method and Supersymmetry,” Physics Letters A, Vol. 269, No. 5-6, 2000, pp. 269-276. doi:10.1016/S0375-9601(00)00267-X

[25]   R. A. S. Silva, E. D. Filho and J. R. Ruggiero, “A Model Coupling Vibrational and Rotational Motion for DNA Molecule,” Journal of Biological Physics, Vol. 34, No. 5, 2008, pp. 511-519. doi:10.1007/s10867-008-9111-2

[26]   C. Tsitouras, “A Tenth Order Sympletic Runge-Kutta-Nystrom Method,” Celestial Mechanics and Dynamical Astronomy, Vol. 74, No. 4, 1999, pp. 223-230. doi:10.1023/A:1008346516048