ENG  Vol.4 No.4 , April 2012
Automotive Ride Comfort Control Using MR Fluid Damper
Abstract: In this paper, the performance of automotive ride comfort using Bouc-Wen type magneto-rheological (MR) fluid damper is studied using a two degree of freedom quarter car model. The sliding mode control is used to force the MR damper to follow the dynamics of ideal sky-hock model. The model is tested on two excitations, the first is a road hump with severe peak amplitude and the second is a statistical random road. The results are generated and presented in time and frequency domains using Matlab/Simulink software. Comparison with the fully active, ideal semi-active and conventional passive suspension systems are given as a root mean square values. Simulation results, for the designed controller, show that with the controllable MR damper has a significant improvement for the vehicle road holding then its lateral stability as well as road damage in comparison with passive, fully active and ideal semi-active suspension systems.
Cite this paper: M. El-Kafafy, S. El-Demerdash and A. Rabeih, "Automotive Ride Comfort Control Using MR Fluid Damper," Engineering, Vol. 4 No. 4, 2012, pp. 179-187. doi: 10.4236/eng.2012.44024.

[1]   J. Y. Wong, “Theory of Ground Vehicles,” 3rd Edition, Wiley-Inter Science, New York, 2001.

[2]   D. Karnopp, “Ac-tive Damping in Road Vehicle Suspension Systems,” Journal of Vehicle System Dynamics, Vol. 12, No. 6, 1983, pp. 291-316. doi:10.1080/00423118308968758

[3]   D. A. Crolla, G. R. Firth, P. J. Hine and P. T. Perarce, “The Performance of Sus-pensions Fitted with Controllable Dampers,” Journal of Vehicle System Dynamics, Vol. 20, 1991, pp. 149-165.

[4]   S. M. El-Demardash, “Improvement of Trucks Ride Dynamics Using a Hydraulic Semi-Active Suspension System,” SAE Paper No 2002-01-3039, SP-1728, 2002.

[5]   G. Alessanro, M. Mauro, S. Carla and U. Giampaolo, “Design of Predictive Semi-Active Suspension System,” Journal of Vehicle System Dynamics, Vol. 41, No. 4, 2004, pp. 277-300. doi:10.1080/00423110412331315169

[6]   S. Tao, H. Zhenyu and C. Dayue, “Signal Frequency- Based Semi-Active Fuzzy Control for Two-Stage Vibration Isolation System,” Journal of Sound and Vibration, Vol. 280, No. 3-5, 2005, pp. 965-981.

[7]   B. F. Spencer, S. J. Dyke, M. K. Sain and J. D. Carlson, “Phenomenological Model for Magnetorheological Dampers,” Journal of Engineering Mechanics, Vol. 123, No. 3, 1997, pp. 230-238. doi:10.1061/(ASCE)0733-9399(1997)123:3(230)

[8]   Lord Corporation Web Site, 2004. http//

[9]   C. C. Chang and L. Zhou, “Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper,” Journal of Structural Engineering, Vol. 128, No. 2, 2002, pp. 231-239. doi:10.1061/(ASCE)0733-9445(2002)128:2(231)

[10]   K. C. Schurter and P. N. Roschke, “Fuzzy Modeling of a Magnetor-heological Damper Using ANFIS,” Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1, 2000, pp. 122-127.

[11]   S. B. Choi, S. K. Lee and Y. P. Park, “A Hys-teresis Model for the Field-Dependent Damping Force of a Magnetorheological Damper,” Journal of Sound and Vibration, Vol. 245, No. 2, 2001, pp. 375-383. doi:10.1006/jsvi.2000.3539

[12]   G. Jin, M. K. Sain, K. D. Pham, B. F. Spencer and J. C. Ramallo, “Modeling MR-Dampers: A Nonlinear Blackbox Approach,” Proceedings of the American Control Conference, Vol. 1, 2001, pp. 429-434.

[13]   A. Leva and L. Piroddi, “NARX-Based Tech-nique for the Modelling of Magneto-Rheological Damping Devices,” Smart Materials and Structures, Vol. 11, No. 1, 2002, pp. 79-88. doi:10.1088/0964-1726/11/1/309

[14]   H. H. Tsang, R. K. L. Su and A. M. Chandler, “Simplified Inverse Dynamics Models for MR Fluid Dampers,” Engineering Structures, Vol. 28, No. 3, 2006, pp. 327-341. doi:10.1016/j.engstruct.2005.06.013

[15]   S. Xubin, A. Mehdi, S. Southward and L. Miller, “Paramettric Study of Nonlinear adaptive Control Algorithm with Magneto-Rheological Sus-pension Systems,” Communications in Nonlinear Science and Numerical Simulation, Vol. 12, No. 4, 2007, pp. 584-607. doi:10.1016/j.cnsns.2005.05.004

[16]   N. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li and B. Samali, “Bouc-Wen Model Pa-rameter Identification for a MR Fluid Damper Using Computa-tionally Efficient GA,” ISA Transactions, Vol. 46, No. 2, 2007, pp. 167-179. doi:10.1016/j.isatra.2006.08.005

[17]   W. H. Liao and C. Y. Lai, “Vibration Control of a Suspension System via a Magne-torheological Fluid Damper,” Journal of Vibration and Control, Vol. 8, No. 4, 2002, pp. 527-547. doi:10.1177/107754602023712

[18]   A. H.-F. Lam and W.-H. Lio, “Semi-Active Control of Automotive Suspension Systems with Magnetorheological Dampers,” International Journal of Vehicle Design, Vol. 33, No. 1-3, 2002, pp. 50-75.

[19]   E. J. Slotine and W. Li, “Applied Nonlinear Control,” Prentice-Hall, New Jersey, 1991, pp. 276-310.

[20]   M. El-Kafafy, “Vehicle Vibration Control Using Smart Fluid Dampers,” MSc Thesis, Helwan University, Egypt, 2006.

[21]   M. El-Kafafy, E. Rabeih, S. El-Demerdash and A. El-Butch, “Active Suspension Design for Passenger Cars Using LQR and GA with PID Controller,” SAE Technical Paper No. 2007-01-2423, 2007.

[22]   S. Lu, C. Ximing and Y. Jun, “Genetic Algorithm-Based Optimum Vehi-cle Suspension Design Using Minimum Dynamic Pavement Load as a Design Criteria,” Journal of Sound and Vibration, Vol. 301, 2007, pp. 18-27. doi:10.1016/j.jsv.2006.08.040