JIS  Vol.3 No.2 , April 2012
Determinants in Human Gait Recognition
ABSTRACT
Human gait is a complex phenomenon involving the motion of various parts of the body simultaneously in a 3 dimensional space. Dynamics of different parts of the body translate its center of gravity from one point to another in the most efficient way. Body dynamics as well as static parameters of different body parts contribute to gait recognition. Studies have been performed to assess the discriminatory power of static and dynamic features. The current research literature, however, lacks the work on the comparative significance of dynamic features from different parts of the body. This paper sheds some light on the recognition performance of dynamic features extracted from different parts of human body in an appearance based set up.

Cite this paper
T. Amin and D. Hatzinakos, "Determinants in Human Gait Recognition," Journal of Information Security, Vol. 3 No. 2, 2012, pp. 77-85. doi: 10.4236/jis.2012.32009.
References
[1]   G. Johansson, “Visual Perception of Biological Motion and a Model for Its Analysis,” Attention, Perception, & Psychophysics, Vol. 14, No. 2, 1973, pp. 210-211. doi:10.3758/BF03212378

[2]   J. B. dec. M. Saunders, V. T. Inman and H. D. Eberhart, “The Major Determinants in Normal and Pathological Gait,” The Journal of Bone and Joint Surgery, Vol. 35-A, No. 3, 1953, pp. 543-558.

[3]   L. Wang, H. Z. Ning, T. N. Tan and W. M. Hu, “Fusion of Static and Dynamic Body Biometrics for Gait Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 2, 2004, pp. 149-158. doi:10.1109/TCSVT.2003.821972

[4]   L. Wang, H. Z. Ning, T. N. Tan and W. M. Hu, “Fusion of Static and Dynamic Body Biometrics for Gait Recognition,” Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV 03), Nice, 13-16 October 2003, pp. 1449-1454. doi:10.1109/ICCV.2003.1238660

[5]   C. BenAbdelkader, R. Cutler and L. Davis, “Person Identification Using Automatic Height and Stride Estimation,” Proceedings of the IEEE 16th International Conference on Pattern Recognition, Quebec, 11-15 August 2002, pp. 377-380. doi:10.1109/ICPR.2002.1047474

[6]   A. F. Bobick and A. Y. Johnson, “Gait Recognition Using Static, Activity-Specific Parameters,” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, 8-14 December 2001, pp. 423-430. doi:10.1109/CVPR.2001.990506

[7]   “Georgia Tech GVU Center/College of Computing— Human Identification at a Distance,” 2011. http://www.cc.gatech.edu/cpl/projects/hid

[8]   A. Veeraraghavan, A. K. Roy-Chowdhury and R. Chellappa, “Matching Shape Sequences in Video with Applications in Human Movement Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 12, 2005, pp. 1896-1909. doi:10.1109/TPAMI.2005.246

[9]   R. D. Green and L. Guan, “Quantifying and Recognizing Human Movement Patterns from Monocular Video Images-Part II: Applications to Biometrics,” IEEE Transactions on Circuits Systems for Video Technology, Vol. 14, No. 2, 2004, pp. 191-198. doi:10.1109/TCSVT.2003.821977

[10]   J. P. Foster, M. S. Nixon and A. Prügel-Bennett , “Automatic Gait Recognition Using Area-Based Metric,” Pattern Recognition Letters, Vol. 24, No. 14, 2003, pp. 2489-2497. doi:10.1016/S0167-8655(03)00094-1

[11]   N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrumfor Nonlinear and Non-Stationary Time Series Analysis,” Proceedings of the Royal Society of London A, Vol. 454, No. 1971, 1998, pp. 903-995.

[12]   S. Sarkar, P. J. Phillips, Z. Y. Liu, I. R. Vega, P. Grother and K. W. Bowyer, “The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 2, 2005, pp. 162-177. doi:10.1109/TPAMI.2005.39

 
 
Top