SCD  Vol.2 No.2 , April 2012
Investigation of VEGF and PDGF signals in vascular formation by 3D culture models using mouse ES cells
Abstract: Vascular formation in vivo involves several processes and signal cascades subsequently occurring in the embryo. Several models by ES cells have been reported for analysis in vitro. We show here a 3D culture system using collagen gel (AteloCell) as a simple and useful system for investigating vascular formations and analyzing the roles of factors in vivo. Although VEGF and PDGF are growth factors with multi-potentials for vascular formation, their sequential roles have not been elucidated. We investigated the effects of VEGF and PDGF B signals for vascular formation by a 3D culture system that embedded embryoid bodies (EBs) from ES cells into a collagen gel. After embedding EBs in the collagen gel with a medium containing VEGF, EBs gave off CD105 immunopositive vessels as the initial step of vasculogenesis. When the factor in the culture medium for EBs was switched from VEGF to PDGF B after 5 days of culture, the morphological features of vessels varied, suggesting the occurrence of vascular-type differentiation. After 11 days of 3D culture, vessels in both groups cultured with VEGF alone and switching to VEGF B at day 5 showed Flk-1 immunoreactivity. Some blood vessels cultured with PDGF B after day 5 expressed either EphrinB2 (arteriole marker) or Flt-4 (lymphatic marker) immunoreactivity, but vessels cultured with VEGF alone exhibited neither of them. Vessels cultured with these two factors could not differentiate into a venous type. The present study indicates that VEGF is the initial signal for vasculogenesis, and that PDGF B is probably involved in vascular diversification.
Cite this paper: Hosoe, H. , Yamamoto, Y. , Tanaka, Y. , Kobayashi, M. , Ninagawa, N. and Torihashi, S. (2012) Investigation of VEGF and PDGF signals in vascular formation by 3D culture models using mouse ES cells. Stem Cell Discovery, 2, 70-77. doi: 10.4236/scd.2012.22011.

[1]   Wang, Z., Cohen, K., Shao, Y., Mole, P., Dombkowski, D. and Scadden, D.T. (2004) Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels. Blood, 103, 100-109. doi:10.1182/blood-2003-04-1063

[2]   Gerecht-Nir, S., Ziskind, A., Cohen, S. and ItskovitzEldor, J. (2003). Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Laboratory Investigation, 83, 1811-1820. doi:10.1097/01.LAB.0000106502.41391.F0

[3]   Nakagami, H., Nakagawa, N., Takeya, Y., Kashiwagi, K., Ishida, C., Hayashi, S., Aoki, M., Matsumoto, K., Nakamura, T., Ogihara, T. and Morishita, R. (2006) Model of vasculogenesis from embryonic stem cells for vascular research and regenerative medicine. Hypertension, 48, 112-119. doi:10.1161/01.HYP.0000225426.12101.15

[4]   Boyd, N.L., Dhara, S.K., Rekaya, R., Godbey, E.A., Hasneen, K., Rao, R.R., West III, F.D., Gerwe, B.A. and Stice, S.L. (2007) BMP4 promotes formation of primitive vascular networks in human embryonic stem cellderived embryoid bodies. Experimental Biology and Medicine (Maywood), 232, 833-843.

[5]   Feraud, O., Cao, Y. and Vittet, D. (2001) Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Laboratory Investigation, 81, 1669-1681. doi:10.1038/labinvest.3780380

[6]   Lindskog, H., Athley, E., Larsson, E., Lundin, S., Hellstrom, M. and Lindahl, P. (2006) New insights to vascular smooth muscle cell and pericyte differentiation of mouse embryonic stem cells in vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1457-1464. doi:10.1161/01.ATV.0000222925.49817.17

[7]   Magnusson, P.U., Looman, C., Ahgren, A., Wu, Y., Claesson-Welsh, L. and Heuchel, R.L. (2007) Platelet-Derived growth factor receptor-beta constitutive activity promotes angiogenesis in vivo and in vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2142-2149. doi:10.1161/01.ATV.0000282198.60701.94

[8]   Yurugi-Kobayashi, T., Itoh, H., Yamashita, J., Yamahara, K., Hirai, H., Kobayashi, T., Ogawa, M., Nishikawa, S., Nishikawa, S-I. and Nakao, K. (2003). Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to adult neovascularization in proper differentiation stage. Blood, 101, 2675-2678. doi:10.1182/blood-2002-06-1877

[9]   Coultas, L., Chawengsaksophak, K. and Rossant, J. (2005) Endothelial cells and VEGF in vascular development. Nature, 438, 937-945.

[10]   Lanner, F., Sohl, M. and Farnebo, F. (2007) Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 487-493. doi:10.1161/01.ATV.0000255990.91805.6d

[11]   Ferrari, G., Cook, B.D., Terushkin, V., Pintucci, G. and Mignatti, P. (2009) Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. Journal of Cellular Physiology, 219, 449-458. doi:10.1038/npre.2008.1758.1

[12]   Thommen, R., Humar, R., Misevic, G., Pepper, M.S., Hahn, A.W., John, M. and Battegay, E.J. (1997) PDGFBB increases endothelial migration on cord movements during angiogenesis in vitro. Journal of Cellular Biochemistry, 64, 403-413. doi:10.1002/(SICI)1097-4644(19970301)64:3<403::AID-JCB7>3.0.CO;2-Z

[13]   Lange, S., Heger, J., Euler, G., Wartenberg, M., Piper, H.M. and Sauer, H. (2009) Platelet-Derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovascular Research, 81, 159-168. doi:10.1093/cvr/cvn258

[14]   Hao, X., Silva, E.A., Mansson-Broberg E.A., Grinnemo, K-H., Siddiqui, A.J., Dellgren, G., Wardell E., Brodin, L.A., Mooney, D.J. and Sylvén, C. (2007) Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75, 178-185. doi:10.1016/j.cardiores.2007.03.028

[15]   Stavridis, M.P., Collins, B.J. and Storey, K.G. (2010) Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development, 137, 881-890. doi:10.1242/dev.043117

[16]   Elizalde, C., Campa, V.M., Caro, M., Schlangen, K., Aransay, A.M., Del Mar Vivanco, M. and Kypta, R.M. (2010) Distinct roles for wnt-4 and wnt-11 during retinoic acid-induced neuronal differentiation. Stem Cells, 29, 141-153. doi:10.1002/stem.562

[17]   Seifert, T., Stoelting, S., Wagner, T. and Peters, S.O. (2008) Vasculogeneic maturation of E14 embryonic stem cells with evidence of early vascular endothelial growth factor independency. Differentiation, 76, 857-867. doi:10.1111/j.1432-0436.2008.00271.x

[18]   Kawamura, H., Li, X., Harper, S.J., Bates, D.O. and Claesson-Welsh, L. (2008) Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Research, 68, 4683-4692. doi:10.1158/0008-5472.CAN-07-6577

[19]   Cao, R., Bjorndahl, M.A., Religa, P., Clasper, S., Garvin, S., Galter D., Meister, B., Ikomi, F., Tritsaris, K., Dissing, S., Ohhashi, T., Jackson, D.G., and Cao, Y. (2004) PDGFBB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 6, 333-345. doi:10.1016/j.ccr.2004.08.034

[20]   Yamashita, J.K. (2007) Differentiation of arterial, venous, and lymphatic endothelial cells from vascular progenitors. Trends in Cardiovascular Medicine, 17, 59-63. doi:10.1016/j.tcm.2007.01.001

[21]   You, L.R., Lin, F.J., Lee, C.T., DeMayo, F.J., Tsai, M.J. and Tsai, S.Y. (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435, 98-104.

[22]   Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R.A., Shokat, K.M. and Stainier, D.Y. (2009) Arterial-Venous segregation by selective cell sprouting: An alternative mode of blood vessel formation. Science, 326, 294-298. doi:10.1126/science.1178577

[23]   Yamamizu, K., Matsunaga, T., Uosaki, H., Fukushima, H., Katayama, S., Hiraoka-Kanie, M., Mitani, K. and Yamashita, J.K. (2010) Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors. Journal of Cell Biology, 189, 325-338.

[24]   Seki, T., Hong, K.H. and Oh, S.P. (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Laboratory Investigation, 86, 116-129. doi:10.1038/labinvest.3700376

[25]   Kokudo, T., Suzuki, Y., Yoshimatsu, Y., Yamazaki, T., Watabe, T. and Miyazono, K. (2008) Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. Journal of Cell Science, 121, 3317-3324. doi:10.1242/jcs.028282