OJG  Vol.2 No.2 , April 2012
Subsurface Facies Analysis of the Late Cambrian Mt. Simon Sandstone in Western Ohio (Midcontinent North America)
ABSTRACT
The Cambrian Mt. Simon Sandstone (MSS) is a possible unconventional gas reservoir in the Illinois, Michigan, and Appalachian Basins, but comparatively little is known about the unit. This study used core and well logs from two deep exploratory wells to interpret the depositional environment of the MSS under western Ohio, where the MSS is about 120 m thick and found 1060 m below ground surface. In western Ohio, the MSS unconformably overlies the Precambrian Middle Run Formation, is conformably overlain by the Cambrian Eau Claire Formation, and has a distinctive gamma-ray log-signature. In well DGS-2627, the MSS consists of tan, friable, moderately sorted, rounded, coarse- to very coarse-grained siliceous quartz arenite with minor heterolithic sandstone-mudstone couplets (rhythmites) and quartz granule conglomerate. Features indicative of tidally-influenced, shallow marine settings include tidal rhythmites, lenticular-, flaser-, and wavy-bedding, herringbone cross-bedding, mud-drapes, tidal bundles, reactivation surfaces, intraclasts, and bioturbation. The unit generally coarsens- and thickens-upward, and is interpreted as migration of a tidally-influenced transgressive barrier sequence. A subsurface facies model for the MSS is developed by interpreting geophysical logs and cores from DGS-2627l, and this model is semi-quantitatively tested by first interpreting well BP-4 using geophysical logs alone, then confirming the results using core.

Cite this paper
A. Saeed and J. Evans, "Subsurface Facies Analysis of the Late Cambrian Mt. Simon Sandstone in Western Ohio (Midcontinent North America)," Open Journal of Geology, Vol. 2 No. 2, 2012, pp. 35-47. doi: 10.4236/ojg.2012.22004.
References
[1]   R. T. Ryder, C. S. Swezey, R. D. Crangle Jr. and M. H. Trippi, “Geologic Cross Section E-E’ through the Appalachian Basin from the Findlay Arch, Wood County, Ohio to the Valley and Ridge Province, Pendleton County, West Virginia,” USGS Scientific Investigation Map 2985, Cross Section, 2008, 48 p.

[2]   M. T. Baranoski. “Structural Contour Map on the Precambrian Unconformity Surface in Ohio and Related Basement Features,” Ohio Division of Geological Survey, Map PG-23, 2002, 18 p.

[3]   M. T. Baranoski, S. L. Dean, J. L. Wicks and U. M. Brown, “Unconformity-Bound Seismic Reflection Sequences Define Grenville-Age Rift System and Foreland Basins Beneath the Phanerozoic in Ohio,” Geosphere, Vol. 5, No. 2, 2009, pp. 140-151. doi:10.1130/GES00202.1

[4]   J. E. Lucius and R. R. B. Von Frese, “Aeromagnetic and Gravity Anomaly Constraints on the Crustal Geology of Ohio,” Geologic Society of America Bulletin, Vol. 100, 1988, pp. 104-116. doi:10.1130/0016-7606(1988)100<0104:AAGACO>2.3.CO;2

[5]   N. P. James, R. K. Stevens, C. R. Barens and I. Knight, “Evolution of a Lower Paleozoic Continental Margin Carbonate Platform, Northern Canadian Appalachians: Controls on Carbonate Platform and Basin Development,” In: P. D. Crevello, J. L. Wilson, J. F. Sarg and J. F. Read, Eds., The Control on Carbonate Platform and Basin Development, SEPM Special Publication 44, 1989, pp. 124-146.

[6]   M. C. Hansen, “The Geology of Ohio—The Cambrian,” Ohio Geology, 1997, pp. 1-5.

[7]   A. Janssens, “Stratigraphy of the Cambrian and Ordovician Rocks in Ohio,” Ohio Geological Survey Bulletin, Vol. 64, 1973, 197 p.

[8]   R. H. Shaver, C. H. Ault, A. M. Burger, D. D. Carr, J. B. Droste, D. L. Eggert, H. H. Gray, D. Harper, N. R. Hasenmueller, W. A. Hasenmueller, A. S. Horowitz, H. C. Hutchison, B. D. Keith, S. J. Keller, J. B. Patton, C. B. Rexroad and C. E. Weir, “Compendium of Paleozoic Rock-Unit Stratigraphy in Indiana—A Revision,” Indiana Geological Survey Bulletin, Vol. 59, 1986, pp. 1-2.

[9]   R. T. Ryder, A. G. Harris and J. E. Repetski. “Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Medina County, Ohio, through Southwestern and South-Central Pennsylvania to Hampshire County, West Virginia,” USGS Bulletin 1839-K, 1992, 32 p.

[10]   D. C. Harris and M. T. Baranoski, “Cambrian Pre-Knox Group Play in the Appalachian Basin,” Ohio Geological Survey Information Circular, Vol. 60, 1997, pp. 1-26.

[11]   L. E. Babcock, “Biostratigraphic Significance and Paleogeographic Implications of Cambrian Fossils from Deep Core, Warren County, Ohio,” Journal of Paleontology, Vol. 68, No. 1, 1994, pp. 24-30.

[12]   M. E. Ostrom, “Cambrian Stratigraphy in Wisconsin.” Wisconsin Geological and Natural History Survey Information Circ., Vol. 7, 1966, pp. 1-79.

[13]   S. G. Driese, C. W. Byers and R. H. Dott Jr., “Tidal Deposition of the Basal Upper Cambrian Mt. Simon Sandstone in Wisconsin,” Journal of Sedimentary Petrology, Vol. 51, 1981, pp. 367-381.

[14]   J. W. Hagedorn, R. H. Dott Jr. and D. Damrow, “Stranded on a Late Cambrian Shoreline: Medusa from Central Wisconsin,” Geology, Vol. 30, No. 2, 2002, pp. 147-150. doi:10.1130/0091-7613(2002)030<0147:SOALCS>2.0.CO;2

[15]   J. T. Cottingham, “Cambrian-Early Ordovician Sequence Stratigraphy and Mt. Simon Sandstone Petrology in the Michigan Basin,” M.Sc. Thesis, Western Michigan University, Kalamazoo, 1990, 87 p.

[16]   H. G. Reading and J. D. Collinson, “Clastic Coasts,” In: H. G. Reading, Ed., Sedimentary Environments, Processes, Facies, and Stratigraphy, Blackwell Scientific Publishing, Oxford, 1996, pp. 154-231.

[17]   D. C. Harris, J. A. Drahovzal, J. G. Hickman, B. C. Nutthall, M. T. Baranoski and K. L. Avary, “Rome Trough Consortium Final Report and Data Distribution,” Kentucky Geological Survey Series 12, Open-File Report 04-0006, 2004.

[18]   C. S. Swezey, “Regional Stratigraphy and Petroleum Systems of the Michigan Basin, North America,” USGS Scientific Investigation Map 2978, 2008.

[19]   M. T. Baranoski, R. A. Riley and M. E. Wolfe, “Cambrian-Ordovician Knox Unconformity Play,” In: J. B. Roen and B. J. Walker, Eds., Atlas of Major Appalachian Gas Plays, West Virginia Geological and Economic Survey, Publication V-25, 1996, pp. 181-188.

[20]   USGS, “Assessment of Undiscovered Oil and Gas Resources of the Appalachian Basin Province 2002,” USGS Fact Sheet FS-009-03, 2003, 2 p.

[21]   USGS, “Assessment of Undiscovered Oil and Gas Resources of the US Portion of the Michigan Basin 2004,” USGS Fact Sheet 2005-3070, 2004, 2 p.

[22]   USGS, “Assessment of Undiscovered Oil and Gas Resources of the Illinois Basin 2007,” USGS Fact Sheet 2007-3058, 2007, 2 p.

[23]   H. E. Leetaru and D. G. Morse, “Characterization of the Mt. Simon Sandstone Gas Storage Reservoirs at Herscher and Herscher Northwest Fields, Kankakee County, Illinois [Abstract],” Geological Society of America Abstracts with Programs, Vol. 41, No. 4, 2007, p. 4.

[24]   N. Gupta, B. Sass, S. Chattopadhyay, J. Sminchak, P. Wang and T. Espie, “Geologic Storage of CO2 from Refining and Chemical Facilities in the Midwestern US,” Energy, Vol. 29, No. 9-10, 2004, pp. 1599-1609. doi:10.1016/j.energy.2004.03.062

[25]   A. Safeen, E. Croiset, P. L. Douglas and I. Chatzis, “CO2 Sequestration in Ontario, Canada. Part I: Storage Evaluation of Potential Reservoirs,” Energy Conversion and Management, Vol. 45, No. 17, 2004, pp. 2645-2659. doi:10.1016/j.enconman.2003.12.003

[26]   W. R. Dickinson and C. A. Suczek, “Plate Tectonics and Sandstone Compositions,” American Association of Petroleum Geologists Bulletin, Vol. 63, No. 12, 1979, pp. 2164-2182.

[27]   A. Saeed, “Subsurface Facies Analysis of the Cambrian Mt. Simon Sandstone in Western Ohio,” M.Sc. Thesis, Bowling Green State University, Bowling Green, 2002, 167 p.

[28]   D. L. Shrake, P. J. Wolfe, B. H. Richard, E. M. Swinford, L. H. Wickstrom, P. E. Potter and G. W. Sitler, “Lithologic and Geophysical Description of a Continuously Cored Hole in Warren County, Ohio, Including Description of the Middle Run Formation (Precambrian?) and a Seismic Profile across the Core Site,” Ohio Geological Survey, Information Circular 56, 1990, 11 p.

[29]   M. T. Heald and G. F. Baker, “Diagenesis of the Mt. Simon and Rose Run Sandstones in western West Virginia and southern Ohio,” Journal of Sedimentary Petrology, Vol. 47, No. 1, 1977, pp. 66-77.

[30]   J. H. J. Terwindt, “Origin and Sequences of Sedimentary Structures in Inshore Mesotidal Deposits of the North Sea,” In: S. D. Nio, R. T. E. Shuttenhelm and T. C. E. van Weering, Eds., Holocene Marine Sedimentation in the North Sea Basin, International Association of Sedimentologists, Special Publication 5, 1981, pp. 4-26.

[31]   E. P. Kvale and A. W. Archer. “Characteristics of Two Pennsylvanian-Age Semidiurnal Tidal Deposits in the Illinois Basin, USA,” In: D. G. Smith G. E. Reinson, B. A. Zaitlain and R. A. Rahmani, Eds. Clastic Tidal Sedimentology, Canadian Society of Petroleum Geologists, Memoir 16, 1991, pp. 179-188.

[32]   A. W. Archer, “Modeling of Tidal Rhythmites Based on a Range of Diurnal to Semidiurnal Tidal-Station Data,” Marine Geology, Vol. 123, No. 1-2, 1995, pp. 1-10. doi:10.1016/0025-3227(95)80001-R

[33]   T. A. Ehlers and M. A. Chan, “Tidal Sedimentology and Estuarine Deposition of the Proterozoic Big Cottonwood Formation,” Journal of Sedimentary Research, Vol. 69, No. 6, 1996, pp. 1169-1180.

[34]   B. S. Hart and A. G. Plint, “Gravelly Shoreface and Beachface Deposits,” In: A. G. Plint, Ed., Sedimentary Facies Analysis, International Association of Sedimentologists, Special Publication 22, 1995, pp. 75-99.

[35]   R. G. Walker. “Waveand Storm-Dominated Shallow Marine Systems,” In: R. G. Walker and N. P. James, Eds., Facies Models: Response to Sea Level Change, Geological Association of Canada, Geotext 1, 1992, pp. 219-238.

[36]   W. Nemec and R. J. Steel, “Alluvial and Coastal Conglomerates: Their Significant Features and Some Comments on Gravelly Mass-Flow Deposits,” In: E. H. Koster and R. J. Steel, Eds. Sedimentology of Gravels and Conglomerates, Canadian Society of Petroleum Geologists Memoir 10, 1984, pp. 1-31.

[37]   T. F. Moslow and R. S. Tye, “Recognition and Characterization of Holocene Tidal Inlet Sequences,” Marine Geology, Vol. 63, No. 1-4, 1985, pp. 129-151. doi:10.1016/0025-3227(85)90081-7

[38]   M. J. Visser, “Neap-Spring Cycles Reflected in Holocene Sub-Tidal, Large-Scale Bedform Deposits: A Preliminary Note,” Geology, Vol. 8, No. 11, 1980, pp. 543-546. doi:10.1130/0091-7613(1980)8<543:NCRIHS>2.0.CO;2

[39]   R. W. Dalrymple, “Morphology and Internal Structure of Sand Waves in the Bay of Fundy,” Sedimentology, Vol. 31, 1984, pp. 365-382. doi:10.1111/j.1365-3091.1984.tb00865.x

[40]   J. D. Collinson, “The Sedimentology of the Grindslaw Shales and the Kinderscout Grit: A Deltaic Complex in the Namurian of Northern England,” Journal of Sedimentary Petrology, Vol. 39, No. 1, 1970, pp. 194-221. doi:10.1016/0037-0738(70)90013-8

[41]   G. E. Reinson, “Transgressive Barrier Island and Estuarine Systems,” In: R. G. Walker and N. P. James, Eds., Facies Models: Response to Sea Level Change, Geological Association of Canada, Geotext 1, 1992, pp. 179-194.

[42]   D. J. Cant, “Subsurface Facies Analysis,” In: R. G. Walker and N. P. James, Eds., Facies Models: Response to Sea Level Change, Geological Association of Canada, GeoText 1, 1992, pp. 27-45.

[43]   G. E. Reinson, “Barrier Island and Associated Strand-Plain Systems,” In: R. G. Walker, Ed., Facies Models, 2nd Edition, Geoscience Canada, Reprint Series 1, 1984, pp. 119-140.

[44]   D. G. F. Long and S. S. Yip, “The Early Cambrian Bradore Formation of Southeastern Labrador and Adjacent Parts of Quebec: Architecture and Genesis of Clastic Strata on an Early Paleozoic Wave-Swept Shallow Marine Shelf,” Sedimentary Geology, Vol. 215, No. 50, 2009, pp. 50-69. doi:10.1016/j.sedgeo.2009.01.001

[45]   J. M. Demarest and J. C. Kraft, “Stratigraphic Record of Quaternary Sea Levels: Implication for More Ancient Strata,” In: D. Nummedal, O. H. Pilkey and J. D. Howard, Eds., Sea-Level Fluctuation and Coastal Evolution, SEPM Special Publication 41, 1987, 267 p. doi:10.2110/pec.87.41.0223

[46]   A. C. Runkel, J. F. Miller, R. M. McKay, A. R. Palmer and J. F. Taylor, “High-Resolution Sequence Stratigraphy of Lower Paleozoic Sheet Sandstones in Central North America: The Role of Special Conditions of Cratonic Interiors in Development of Strata Architecture,” Geological Society of America Bulletin, Vol. 119, No. 7-8, 2007, pp. 860-881. doi:10.1130/B26117.1

 
 
Top