Approximate Confidence Interval for the Mean of Poisson Distribution

Show more

References

[1] T. T. Cai, “One-Sided Confidence Intervals in Discrete Distributions,” Journal of Statistical Planning and Inference, Vol. 131, No. 1, 2005, pp. 63-88.
doi:10.1016/j.jspi.2004.01.005

[2] J. Byrneand and P. Kabaila, “Comparison of Poisson Con fidence Intervals,” Communications in Statistics-Theory and Methods, Vol. 34, No. 3, 2005, pp. 545-556.
doi:10.1081/STA-200052109

[3] Y. Guan, “Moved Score Confidence Intervals for Means of Discrete Distributions,” American Open Journal Statistics, Vol. 1, 2001, pp. 81-86.
doi:10.4236/ojs.2011.12009

[4] K. Krishnamoorthy and J. Peng, “Improved Closed-Form Prediction Intervals for Binomial and Poisson Distribution,” Journal of Statistical Planning and Inference, Vol. 141, No. 5, 2011, pp. 1709-1718.
doi:10.1016/j.jspi.2010.11.021

[5] J. Stamey and C. Hamillton, “A Note on Confidence Intervals for a Linear Function of Poisson Rates,” Communications in Statistics-Theory and Methods, Vol. 35, No. 4, 2005, pp. 849-856. doi:10.1080/03610920802255856

[6] M. B. Swifi, “Comparison of Confidence Intervals for a Poisson Mean-Further Considerations,” Communications in Statistics-Theory and Methods, Vol. 38, No. 5, 2009, pp. 748-759.

[7] L. A. Barker, “Comparison of Nine Confidence Intervals for a Poisson Parameter When the Expected Number of Events Is ≤ 5,” The American Statistician, Vol. 56, No. 2, 2002, pp. 85-89. doi:10.1198/000313002317572736

[8] R Development Core Team, “R: A Language and Environment for Statistical Computing,” R Foundation for Statistical Computing, Vienna, 2011.

[9] N. Gurtler and N. Henze, “Recent and Classical Goodness-of-Fit Tests for the Poisson Distribution,” Journal of Statistical Planning and Inference, Vol. 90, No. 2, 2000, pp. 207-225. doi:10.1016/S0378-3758(00)00114-2

[10] P. Blaesild and J. Granfeldt, “Statistics with Applications in Biology and Geology,” Chapman & Hall/CRC, New York, 2003.