NJGC  Vol.2 No.2 , April 2012
Thermal and Structural Characterization of Transparent Rare-Earth Doped Lead Fluoride Glass-Ceramics
Abstract: The devitrification of glasses with composition 50GeO2-40PbO-10PbF2-xREF3, RE = Gd, Eu, 0 < x ≤ 2, leads to glass ceramics made of RE3+: β-PbF2 nanocrystals embedded in a glassy oxide matrix. This transformation is investigated using thermal analysis, X-ray diffraction and electron microscopy. A comparison with RE3+: β-PbF2 ceramics prepared by standard ceramic techniques is performed. The Rare Earth cations show a strong nucleating effect for the precipitation of the RE3++: β-PbF2 nanocrystals. The evolution of the unit cell parameters of the REF3: β-PbF2 solid solution results from a combined effect of Pb2+-RE3+ substitution and interstitial F– introduction. In the glass ceramics, RE3+: β-PbF2 nanocrystals are constrained by the glassy matrix when they form with a pressure equivalent to 1.6 GPa. The constrained nanocrystals can return to a relaxed state by chemical dissolution of the embedding glassy matrix, followed by thermal treatments.
Cite this paper: C. Bensalem, M. Mortier, D. Vivien, P. Gredin, G. Patriarche and M. Diaf, "Thermal and Structural Characterization of Transparent Rare-Earth Doped Lead Fluoride Glass-Ceramics," New Journal of Glass and Ceramics, Vol. 2 No. 2, 2012, pp. 65-74. doi: 10.4236/njgc.2012.22010.

[1]   G. Müller and N. Neuroth, “Glass-Ceramic—A New Laser Host Material,” Journal of Applied Physics, Vol. 44, No. 5, 1973, pp. 2315-2318. doi:10.1063/1.1662556

[2]   P. A. Tick, N. F. Borrelli, L. K. Cornelius and M. A. Newhouse, “Transparent Glass-Ceramics for 1300 nm Amplifier Applications,” Journal of Applied Physics, Vol. 78, No. 11, 1995, pp. 6367- 6374. doi:10.1063/1.360518

[3]   M. C. Gon?alves, L. F. Santos and R. M. Almeida “Rare- earth-Doped Transparent Glass-Ceramics,” Comptes Rendus Chimie, Vol. 5, No. 12, 2002, pp. 845-854. doi:10.1016/S1631-0748(02)01457-1

[4]   M. Mortier, “Between Glass and Crystal: Glass-Ceramics, a New Way for Optical Materials,” Philosophical Ma- gazine Part B, Vol. 82, No. 6, 2002, pp. 745-753. doi:10.1080/13642810208224364

[5]   M. Mortier and D. Vivien, “Ceramic and Glass-Ceramic lasers,” Annales de Chimie—Science des Matériaux, Vol. 28, No. 6, 2003, pp. 21-33. doi:10.1016/j.anncsm.2003.09.003

[6]   V. Lavin, F. Lahoz, I. R. Martin and U. R. Rodriguez- Mendoza, “Optical Properties of the Rare-Earth Ions in Transparent Oxyfluoride Glass-Ceramics” In: R. Balda, Ed., Photonic Glasses, Research Signpost, Kerala, 2006, pp. 115-149.

[7]   M. Mortier and G. Dantelle, “Oxyfluoride Transparent Glass-Ceramics,” In: A. Tressaud, Ed., Functionalized Inorganic Fluorides, Willey, New York, 2010, pp. 273 - 306.

[8]   G. Dantelle, M. Mortier, D. Vivien and G. Patriarche, “Nucleation Efficiency of Erbium and Ytterbium Fluorides in Transparent Oxyfluoride Glass-Ceramics,” Journal of Materials Research, Vol. 20, No. 2, 2005, pp. 472- 481. doi:10.1557/JMR.2005.0051

[9]   G. Dantelle, M. Mortier, Ph. Goldner and D. Vivien, “EPR and Optical Study of Yb3+-Doped β-PbF2 Single Crystals and Nanocrystals of Glass-Ceramics,” Journal of Physics: Condensed Matter, Vol. 18, No. 34, 2006, pp. 7905-7922. doi:10.1088/0953-8984/18/34/005

[10]   G. Dantelle, M. Mortier and D. Vivien, “EPR and Optical Studies of Erbium-Doped β-PbF2 Single-Crystals and Nano-Crystals in Transparent Glass-Ceramics,” Physical Chemistry Chemical Physics, Vol. 9, No. 41, 2007, pp. 5591-5598. doi:10.1039/B706735F

[11]   C. Bensalem, M. Mortier, D. Vivien and M. Diaf, “Thermal and Optical Investigation of EuF3-Doped Lead Fluo- roger-Manate Glasses,” Journal of Non-Crystalline Solids, Vol. 356, No. 1, 2010, pp. 56-64. doi:10.1016/j.jnoncrysol.2009.09.023

[12]   C. Bensalem, M. Mortier, D. Vivien and M. Diaf, “Optical Investigation of Eu3+: PbF2 Ceramics and Transparent Glass-Ceramics,” Optical Materials, Vol. 33, No. 6, 2011, pp. 791-798. doi:10.1016/j.optmat.2010.12.024

[13]   R. T. Wegh, H. Donker, K. D. Oskam and A. Meijerink “Visible Quantum Cutting in LiGdF4:Eu3+ through Down- conversion,” Science, Vol. 283, No. 5402, 1999, pp. 663- 666. doi:10.1126/science.283.5402.663

[14]   C. R. Ronda, “Phosphors for Lamps and Displays: An Applicational View,” Journal of Alloys and Compounds, Vol. 225, No. 1-2, 1995, pp. 534-538. doi:10.1016/0925-8388(94)07065-2

[15]   D. Zhao, X. Qiao, X. Fan and M. Wang, “Local Vibration around Rare-Earth Ions in SiO2-PbF2 Glass and Glass-Ce-Ramics Using Eu3+ Probe,” Physica B: Condensed Matter, Vol. 395, No. 1-2, 2007, pp. 10-15. doi:10.1016/j.physb.2006.12.007

[16]   K. Driesen, V. K. Tikhomirov and C. G?rller-Walrand, “Eu3+ as a Probe for Rare-Earth Dopant Site Structure in Nano-Glass-Ceramics,” Journal of Applied Physics, Vol. 102, No. 2, 2007, Article ID: 024312. doi:10.1063/1.2759195

[17]   L. A. Bueno, A. S. Gouveia-Neto, E. B. da Costa, Y. Messaddeq and S. J. L. Ribeiro, “Structural and Spectro-Scopic Study of Oxyfluoride Glasses and Glass-Ceramics Using Europium Ion as a Structural Probe,” Journal of Physics: Condensed Matter, Vol. 20, No. 14, 2008, Article ID: 145201. doi:10.1088/0953-8984/20/14/145201

[18]   M. Mortier and G. Patriarche, “Oxide Glass Used as Inorganic Template for Fluorescent Fluoride Nanoparticles Synthesis,” Optical Materials, Vol. 28, No. 12, 2006, pp. 1401-1404. doi:10.1016/j.optmat.2005.07.008

[19]   P. Caussin, J. Nusinovici and D. W. Beard, “Using Digitized X-Ray Powder Diffraction Scans as Input for New PC-AT Search/Match Program,” Advanced X-ray Analysis, Vol. 31, 1988, pp. 423-430.

[20]   P. Caussin, J. Nusinovici and D. W. Beard, “Specific Data Handling Techniques and New Enhancements in Search/Match Program,” Advanced X-Ray Analysis, Vol. 32, 1989, pp. 531-538.

[21]   J. Laugier, B. Bochu, “Laboratoire des Matériaux et du Génie Physique, ” 1999.

[22]   M. Mortier and G. Patriarche, “Structural characterisation of Transparent Oxyfluoride Glass-Ceramics,”Journal of Materials Science, Vol. 35, No. 19, 2000, pp. 4849-4856. doi:10.1023/A:1005661315593

[23]   G. Dantelle, M. Mortier, G. Patriarche and D. Vivien, “Er3+-Doped PbF2: Comparison between Nanocrystals in Glass-Ceramics and Bulk Single Crystals” Journal of Solid State Chemistry, Vol. 179, No. 7, 2006, pp. 1995- 2003. doi:10.1016/j.jssc.2006.03.038

[24]   A. Dib, S. Aléonard and M. Th. Roux, “Synthèse et Caractéristiques Cristallographiques des Phases Solides de Type Fluorine des Systèmes PbF2-LnF3,”Journal of Solid State Chemistry, Vol. 52, No. 3, 1984, pp. 292-301. doi:10.1016/0022-4596(84)90012-4

[25]   G. Dantelle, M. Mortier, D. Vivien and G. Patriarche “Effect of CeF3 Addition on the Nucleation and Up-Conversion Luminescence in Transparent Oxyfluoride Glass- Ceramics,” Chemistry Materials, Vol. 17, No. 8, 2005, pp. 2216-2222. doi:10.1021/cm047821d

[26]   J. E. Huheey, E. A. Keiter and R. Keiter, “Inorganic Chemistry, Principle of Structure and Reactivity,” Harper Collins College Publishers, New York, 1993.

[27]   S. N. Achary, A. K. Tyagi, P. Balog and J. K?hler, “High-Pressure and High-Temperature Studies on Fluorite-Type Pb1–xNdxF2+x (x = 0.15 and 0.25),” Journal of Alloys and Compounds, Vol. 417, No. 1-2, 2006, pp. 250- 253. doi:10.1016/j.jallcom.2005.08.069

[28]   T. S. Aurora, D. O. Pederson and S. M. Day, “Thermal-Expansion and Index-of-Refraction Variation in Lead Fluoride between 300 and 850 K,” Physical Review B, Vol. 41, No. 14, 1990, pp. 9647-9649. doi:10.1103/PhysRevB.41.9647

[29]   J. E. Shelby, “Thermal Expansion of Mixed-Alkali Germa-Nate Glasses” Journal of Applied Physics, Vol. 46, No. 1, 1975, pp. 193-196. doi:10.1063/1.321318

[30]   H. Darwish, S. N. Salama and S. M. Salman, “Contribution of Germanium Dioxide to the Thermal Expansion Characteristics of Some Borosilicate Glasses and Their Corresponding Glass-Ceramics” Thermochimica Acta, Vol. 374, No. 2, 2001, pp. 129-135. doi:10.1016/S0040-6031(01)00481-6

[31]   L. Ehm, K. Knorr, F. M?dler, H. Voigtl?nder, E. Busetto, A. Cassetta, A. Lausi and B. Winkler, “High-Pressure X-Ray Diffraction Study on α-PbF2,” Journal of Physics and Chemistry of Solids, Vol. 64, No. 6, 2003, pp. 919- 925. doi:10.1016/S0022-3697(02)00437-7