A Tight Prediction Interval for False Discovery Proportion under Dependence

Show more

References

[1] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society Series B-Methodological, Vol. 57, No. 1, 1995, pp. 289- 300.

[2] J. D. Storey, “A Direct Approach to False Discovery Rates,” Journal of the Royal Statistical Society Series B- Statistical Methodology, Vol. 64, No. 3, 2002, pp. 479- 498. doi:10.1111/1467-9868.00346

[3] W. Pan, “On the Use of Permutation in and the Performance of a Class of Nonparametric Methods to Detect Differential Gene Expression,” Bioinformatics, Vol. 19, No. 11, 2003, pp. 1333-1340.
doi:10.1093/bioinformatics/btg167

[4] J. D. Storey, J. E. Taylor, D. Siegmund, “Strong Control, Conservative Point Estimation and Simultaneous Conservative Consistency of False Discovery Rates: A Unified Approach,” Journal of the Royal Statistical Society Series B-Statistical Methodology, Vol. 66, No. 1, 2004, pp. 187- 205. doi:10.1111/j.1467-9868.2004.00439.x

[5] X. D. Zhang, P. F. Kuan, M. Ferrer, X. Shu, Y. C. Liu, A. T. Gates, P. Kunapuli, E. M. Stec, M. Xu, S. D. Marine, et al., “Hit Selection with False Discovery Rate Control in Genome-Scale Rnai Screens,” Nucleic Acids Research, Vol. 36, No. 14, 2008, pp. 4667-4679.
doi:10.1093/nar/gkn435

[6] E. L. Korn, J. F. Troendle, L. M. McShane and R. Simon, “Controlling the Number of False Discoveries: Application to High-Dimensional Genomic Data,” Journal of Statistical Planning and Inference, Vol. 124, No. 2, 2004, pp. 379-398. doi:10.1016/S0378-3758(03)00211-8

[7] E. L. Korn, M. C. Li, L. M. McShane and R. Simon, “An Investigation of Two Multivariate Permutation Methods for Controlling The False Discovery Proportion,” Statistics in Medicine, Vol. 26, No. 24, 2007, pp. 4428-4440.
doi:10.1002/sim.2865

[8] C. R. Genovese and L. Wasserman, “A Stochastic Process Approach to False Discovery Control,” Annals of Statistics, Vol. 32, No. 3, 2004, pp. 1035-1061.
doi:10.1214/009053604000000283

[9] C. R. Genovese and L. Wasserman, “Exceedance Control of the False Discovery Proportion,” Journal of the American Statistical Association, Vol. 101, No. 476, 2006, pp. 1408-1417. doi:10.1198/016214506000000339

[10] M. J. van der Laan, S. Dudoit and K. S. Pollard, “Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives,” Statistical Applications in Genetics and Molecular Biology, Vol. 3, No. 1, 2004, Article 15.

[11] N. Meinshausen, “False Discovery Control for Multiple Tests of Association under General Dependence,” Scandinavian Journal of Statistics, Vol. 33, No. 2, 2006, pp. 227-237. doi:10.1111/j.1467-9469.2005.00488.x

[12] Y. C. Ge, S. C. Sealfon and T. P. Speed, “Multiple Testing and Its Applications to Microarrays,” Statistical Methods in Medical Research, Vol. 18, No. 6, 2009, pp. 543-563. doi:10.1177/0962280209351899

[13] A. Farcomeni, “Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing,” Scandinavian Journal of Statistics, Vol. 36, No. 3, 2009, pp. 501-517.

[14] Q. Yang, J. Cui, I. Chazaro, L. A. Cupples and S. Demissie, “Power and Type I Error Rate of False Discovery Rate Approaches in Genome-Wide Association Stu- die,” BMC Genetics, Vol. 6, Suppl. 1, 2005.

[15] Y. Pawitan, S. Calza and A. Ploner, “Estimation of False Discovery Proportion under General Dependence,” Bioinformatics, Vol. 22, No. 24, 2006, pp. 3025-3031.
doi:10.1093/bioinformatics/btl527

[16] R. Heller, “Correlated Z-Values and the Accuracy of Large-Scale Statistical Estimates Comment,” Journal of the American Statistical Association, Vol. 105, No. 491, 2010, pp. 1057-1059. doi:10.1198/jasa.2010.tm10240

[17] A. Schwartzman, X. H. Lin, “The Effect of Correlation in False Discovery Rate Estimation,” Biometrika, Vol. 98, No. 1, 2011, pp. 199-214. doi:10.1093/biomet/asq075

[18] Y. F. Huang, H. Y. Xu, V. Calian and J. C. Hsu, “To Permute or Not to Permute,” Bioinformatics, Vol. 22, No. 18, 2006, pp. 2244-2248.
doi:10.1093/bioinformatics/btl383

[19] Y. Xie, W. Pan and A. B. Khodursky, “A Note on Using Permutation-Based False Discovery Rate Estimates to Compare Different Analysis Methods for Microarray Data,” Bioinformatics, Vol. 21, No. 23, 2005, pp. 4280- 4288. doi:10.1093/bioinformatics/bti685

[20] Y. C. Ge and X. Li, “Control of the False Discovery Proportion for Independently Tested Null Hypotheses,” Journal of Probability and Statistics, 2012, in Press.

[21] E. Roquain and F. Villers, “Exact Calculations for False Discovery Proportion with Application to Least Favorable Configurations,” Annals of Statistics, Vol. 39, No. 1, 2011, pp. 584-612. doi:10.1214/10-AOS847

[22] S. Ghosal and A. Roy, “Predicting False Discovery Proportion under Dependence,” Journal of the American Statistical Association, Vol. 106, No. 495, 2011, pp. 1208-1218. doi:10.1198/jasa.2011.tm10488

[23] Y. Shao and C. H. Tseng, “Sample Size Calculation with Dependence Adjustment for FDR-Control in Microarray Studies,” Statistics in Medicine, Vol. 26, No. 23, 2007, pp. 4219-4237. doi:10.1002/sim.2862

[24] A. Farcomeni, “Some Results on the Control of the False Discovery Rate under Dependence,” Scandinavian Journal of Statistics, Vol. 34, No. 2, 2007, pp. 275-297.
doi:10.1111/j.1467-9469.2006.00530.x

[25] B. Efron, “Empirical Bayes Estimates for Large-Scale Prediction Problems,” Journal of the American Statistical Association, Vol. 104, No. 487, 2009, pp. 1015-1028.
doi:10.1198/jasa.2009.tm08523

[26] B. Efron, “Correlation and Large-Scale Simultaneous Significance Testing,” Journal of the American Statistical Association, Vol. 102, No. 477, 2007, pp. 93-103.
doi:10.1198/016214506000001211

[27] L. Wang, H. Tang, V. Thayanithy, S. Subramanian, A. L. Oberg, J. M. Cunningham, J. R. Cerhan, C. J. Steer and S. N. Thibodeau, “Gene Networks and microRNAs Implicated in Aggressive Prostate Cancer,” Cancer Research, Vol. 69, No. 24, 2009, pp. 9490-9497.
doi:10.1158/0008-5472.CAN-09-2183