Modeling of Energy Processes in Wheel-Rail Contacts Operating under Influence of Periodic Discontinuous Forces

Zdzislaw Trzaska^{*}

Show more

References

[1] J. Kisilowski and K. Knothe, “Advanced Railway Vehicle Dynamics,” Technico-Scientific Publisher, Warsaw, 1991.

[2] J. Targosz, “Vibroisolation Systems in Railway and Automotive Transportation Applications,” AGH University Science &Technology Press, Cracow, 2007.

[3] G. Schupp, “Computational Bifurcation Analysis: An Efficient Method for Studying Stationary and Periodic Motions,” SIMPACK User Meeting, Eisenach, 9-11 November 2004, pp. 1-9.

[4] M. J. Steenbergen, “Modeling of Wheels and Rail Discontinuities in Dynamic Wheel-Rail Contact Analysis,” Vehicle System Dynamics, Vol. 44, No. 10, 2006, pp. 763-787. doi:10.1080/00423110600648535

[5] J. Santamaria, E. G. Vadillo and J. Gomez, “Influence of Creep Forces on the Risk of Derailment of Railway Vehicles,” Vehicle System Dynamics, Vol. 47, No. 6, 2009, pp. 721-752. doi:10.1080/00423110802368817

[6] S. Iwnicki, “Handbook of Railway Vehicle Dynamics,” Taylor & Francis, Boca Raton, 2006.

[7] O. D. I. Nwokah and Y. Hurmuzu, “The Mechanical Systems Design Handbook: Modeling, Measurements and Control,” CRC Press, London, 2002.

[8] C. W. de Silva, “Vibrations. Fundamentals and Practice,” CRC Press, London, 2000.

[9] H. Bachman, et al., “Vibration Problems in Structures,” Birkh?user-Verlag, Basel, 1995.
doi:10.1007/978-3-0348-9231-5

[10] H. Benaroua, “Mechanical Vibrations. Analysis, Uncertain Control,” Marcel Dekker, New York, 2004.

[11] G. Schupp, C. Weidemann and L. Mauer, “Modeling the Contact between Wheel and Rail within Multibody System Simulation,” Vehicle System Dynamics, Vol. 41, No. 5, 2004, pp. 349-364.
doi:10.1080/00423110412331300326

[12] J. Piotrowski and W. Kik, “A Simplified Model of Wheel/Rail Contact Mechanics for Non-Hertzian Problems and Its Application in Rail Vehicle Dynamic Simulations,” Vehicle System Dynamics, Vol. 46, No. 1-2, 2008, pp. 27-48. doi:10.1080/00423110701586444

[13] Y. Bezin, S. D. Iwnicki and M. Cavallett, “The Effect of Dynamic Rail Roll on the Wheel-Rail Contact Conditions,” Vehicle System Dynamics, Vol. 46, No. 1, 2008, pp. 107-117. doi:10.1080/00423110701882348

[14] U. von Wagner, “Nonlinear Dynamic Behavior of a Railway Wheelset,” Vehicle. System. Dynamics, Vol. 47, No. 5, 2009, pp. 627-640.
doi:10.1080/00423110802331575

[15] A. Alonso and J. G. Giménez, “Non-Steady State Modeling of Wheel-Rail Contact Problem for the Dynamic Simulation of Railway Vehicles,” Vehicle System Dynamics, Vol. 46, No. 3, 2008, pp. 179-196.
doi:10.1080/00423110701248011

[16] K. Zboinski and M. Dusza, “Bifurcation Approach to the Influence of Rolling Radius Modeling and Rail Inclination on the Stability of Railway Vehicles in a Curved Track,” Vehicle System Dynamics, Vol. 46, No. 1, 2008, pp. 1023-1037. doi:10.1080/00423110802037255

[17] K. Knothe and S. Stichel, “Schienenfahrzeugdynamik,” Springer, Berlin, 2007.

[18] R. P. Feynman, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New World of Physics,” Caltech Engineering and Science, Vol. 23, No. 5, 1960, pp. 22-36. http://www.zyvex.com/nanotech/feynman.html

[19] C. W. de Silva, “Vibration and Shock Handbook,” Taylor & Francis, Boca Raton, 2005.

[20] K. E. Drexler, “Nanosystems: Molecular Machinery, Manu- facturing, and Computation,” Wiley, New York, 1992.

[21] V. L. Popov, et al., “Friction Coefficient in ‘Rail-Wheel’- Contacts as a Function of Material and Loading Parameters,” Physical Mesomechanics, Vol. 5, No. 3, 2002, pp. 113-120.

[22] A. A. Shabanaa, K. E Zaazaaa, J. L. Escalonab and J. R. Sany, “Development of Elastic Force Model for Wheel/- Rail Contact Problems,” Journal of Sound and Vibrations, Vol. 269, No. 1-2, 2004, pp. 295-325.
doi:10.1016/S0022-460X(03)00074-9

[23] R. von Schwerin, “Multibody System Simulation: Nu- merical Methods, Algorithms, and Software,” Springer- Verlag, Berlin, 1999.

[24] D. T. Greenwood, “Advanced Dynamics,” CUP, Cambridge, 2003.

[25] J. Misiak and S. Stachura, “Selected Problems of Static Stability and Dynamics of Rod and Shell Structures,” Publishing Office of the Warsaw University of Ecology and Management, Warsaw, 2010.

[26] W. Blajer, “An Improved Formulation for Constrained Multibody Systems with Singularities,” ZAMM, 81, 2000, pp. 265-266.

[27] A. Orlova, Y. Boronenko, H. Scheffel, R Fr?hling and W. Kik, “Tuning von üterwagendrehgestellen Durch Rad- satzkopplungen,” ZEV-Glasers Annalen, Vol. 126, No. 4, 2002, pp. 270-282.

[28] J. Evans and S. Iwnicki, “Vehicle Dynamics and the Wheel Rail Interface,”
http://www.railtechnologyunit.com

[29] D. Karnopp, “Vehicle Stability,” Marcel Dekker Inc., New York, 2004. doi:10.1201/9780203913567

[30] Z. Trzaska and W. Marszalek, “Periodic Solutions of DAEs with Applications to Dissipative Electric Circuits,” Proceedings of the IASTED Conference Modeling, Identification and Control, Lanzarote, 6-8 February 2006, pp. 309-314.

[31] Z. Trzaska, “Straightforward Method for Studies of Periodic Non-Harmonic States of Linear Systems,” Archive of Electrical Engineering, Vol. 53, No. 2, 2004, pp. 191- 215.

[32] Z. Trzaska, “A New Approach to Shaping One-Period Energies of Dynamical Systems Operating in Non-Sinusoidal States,” Archive of Electrical Engineering, Vol. 54, No. 3, 2005, pp. 265-287.

[33] Z. Trzaska and W. Marszalek, “Computing Periodic Solutions of Linear Differential-Algebraic Systems with Nonsinusoidal Excitations,” Archive of Electrical Engineering, Vol. 55, No. 3-4, 2006, pp. 255-271.

[34] Z. Trzaska, “One-Period Energy in Dynamical Systems with Periodic Discontinuous Excitations,” Elektronika, Vol. 48, No. 3, 2007, pp. 26-32.

[35] E. Zerzm, “Topics in Multidimensional Linear Systems Theory,” Springer, London, 2000.

[36] R. R. Borrelli and C. S. Colleman, “Differential Equations: A Modeling Perspective,” Wiley, New York, 2004.