Nuclear Fuel Cell Calculation Using Collision Probability Method with Linear Non Flat Flux Approach

Show more

References

[1] Z. Su’ud, “Computer Code for Homogenization of Nuclear Fuel Cell in the Fast Reactor,” Proceeding of a Workshop in Computational Science and Nuclear Technology, Bandung, 24-25 February 1998, pp. 110-115.

[2] Z. Su’ud, Y. K. Rustandi and R. Kurniadi, “Parallel Computing in the Calculation of a Constant Group of Nuclear,” Proceeding of the seventh seminar of Technology and Safety of NPP and Nuclear Facilities, Bandung, 19 February 2002, pp. 17-22.

[3] M. A. Shafii and Z. Su’ud, “Development of Cell Homogenization Code Using General Geometry Approach,” International Conference on Advances in Nuclear Science and Engineering, Bandung, 13-14 November 2007, pp. 403-406.

[4] M. A. Shafii, Z. Su’ud, A. Waris and N. Kurniasih, “Development of Cell Homogenization Code with Collision Probability Method,” International Conference of Mathematics and Natural Science, Bandung, 28-30 October 2008, pp. 169-175.

[5] K. Okumura, T. Kugo, K. Kaneko and K. Tsuchihashi, “SRAC 2006: A Comprehensive Neutronics Calculation Code System,” Japan Atomic Energy Agency, Ibaraki, 2007.

[6] M. Nakagawa and K. Tsuchihashi, “SLAROM: A Code for Cell Calculation of Fast Reactor,” Japan Atomic Energy Research Institute, Ibaraki, 1984.

[7] S. S. Rao, “Finite Element Method in Engineering,” Pergamon Press, New York, 1983.

[8] T. Hazama, “Private Communication,” 2008.

[9] T. Hazama, G. Chiba and K. Sugino, “Development of a Fine and Ultra-Fine Group Cell Calculation Code SLAROM-UF for Fast Reactor Analyses,” Journal of Nuclear Science and Technology, Vol. 43, No. 8, 2006, pp. 908-918. doi:10.3327/jnst.43.908