OJAS  Vol.2 No.2 , April 2012
Effect of phlorizin on metabolic abnormalities in Spontaneously Diabetic Torii (SDT) rats
Abstract: The Spontaneously Diabetic Torii (SDT) rat is a novel model for nonobese type 2 diabetes. In this study we investigated the glycolipid metabolic changes with phlorizin-treatment, which inhibits intestinal glucose uptake and renal glucose reabsorption, in male SDT rats. Phlorizin (100 mg/kg, b.i.d., s.c.) was administered for 4 weeks to SDT rats from 20 to 24 weeks of age. As a result, phlorizin reduced the development of hyperglycemia and decreased the hemoglobin A1c (HbA1c) levels. In the liver, phlorizin increased mRNA levels of glucokinase, the enzymes related with the glycogen cascade and the proteins associated with lipid metabolism. In conclusion, chronic administration of phlorizin in SDT rats produced a good glycemic control and an improvement in liver function.
Cite this paper: Ohta, T. , Morinaga, H. , Yamamoto, T. and Yamada, T. (2012) Effect of phlorizin on metabolic abnormalities in Spontaneously Diabetic Torii (SDT) rats. Open Journal of Animal Sciences, 2, 113-118. doi: 10.4236/ojas.2012.22016.

[1]   Buchanan, T.A. (2003) Pancreatic betacell loss and preservation in type 2 diabetes. Clinical Therapeutics, 25, B32-B46. doi:10.1016/S0149-2918(03)80241-2

[2]   Kahn, S.E., Prigeon, R.L., Schwartz, R.S., Fujimoto, W.Y., Knopp, R.H., Brunzell, J.D. and Porte, D. Jr. (2001) Obesity, body fat distribution, insulin sensitivity and islet beta-cell function as explanation for metabolic diversity. Journal of Nutrition, 131, 354S-360S.

[3]   Kanh, S.E. (2003) The relative contribution of insulin resistance and betacell dysfunction to the patho-physiology of type 2 diabetes. Diabetologia, 46, 3-19.

[4]   LeRoith, D. (2002) Beta-cell dysfunction and insu-lin resistance in type 2 diabetes: Role of metabolic and genetic abnormalities. American Journal of Medicine, 113, 3S- 11S. doi:10.1016/S0002-9343(02)01276-7

[5]   Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y. and Takahashi, H. (2003) Glucose toxicity in β-cells: Type 2 diabetes, good radi-cal gone bad, and the glutathione connection. Diabetes, 52, 581-587. doi:10.2337/diabetes.52.3.581

[6]   Masuyama, T., Komeda, K., Hara, A., Noda, M., Shinohara, M., Oikawa, T., Kanazawa, Y. and Taniguchi, K. (2004) Chronological characterization of diabetes development in male Spontaneously Diabetic Torii rats. Biochemical and Biophysical Research Communications, 314, 870-877. doi:10.1016/j.bbrc.2003.12.180

[7]   Shinohara, M., Masuyama, T., Shoda, T., Takahashi, T., Katsuda, Y., Komeda, K., Kuroki, M., Kakehashi, A. and Kanazawa, Y. (2000) A new spontaneously diabetic non obese Torii rat strain with severe ocular complications. International Journal of Experimental Diabetes Research, 1, 89-100. doi:10.1155/EDR.2000.89

[8]   Ohta, T., Matsui, K., Miyajima, K., Sasase, T., Masuyama, T., Shoda, T., Koizumi, K., Shino-hara, M. and Matsushita, M. (2007) Effect of insulin therapy on renal changes in Spontaneously Diabetic Torii rats. Experimental Animals, 56, 355-362. doi:10.1538/expanim.56.355

[9]   Sasase, T., Ohta, T., Ogawa, N., Miyajima, K., Ito, M., Yamamoto, H., Morinaga, H. and Matsushita, M. (2006) Preventive effects of glycaemic control on ocular complications of Spontaneously Diabetic Torii rats. Diabetes Obesity and Metabolism, 8, 501-507.

[10]   Matsui, K., Oda, T., Nishizawa, E., Sano, R., Yamamoto, H., Fukuda, S., Sasase, T., Miyajima, K., Ueda, N., Ishii Y., Ohta, T. and Mat-sushita, M. (2009) Pancreatic function of Spontaneously Diabetic Torii rats in prediabetic stage. Experimental Animals, 58, 363-374. doi:10.1538/expanim.58.363

[11]   Ohta, T., Miyajima, K. and Yamada, T. (2010) Changes in glycolipid metabolism during a high-sucrose feeding in Spontaneously Diabetic Torii (SDT) rats, a genetic model of nonobese type 2 diabetes. Journal of Animal and Veterinary Advances, 9, 2883-2889. doi:10.3923/javaa.2010.2883.2889

[12]   Ohta, T., Miyajima, K. and Yamada, T. (2011) Pathophysiological changes in prediabetic stage of Spontaneously Diabetic Torii (SDT) rats. Journal of Animal and Veterinary Advances, 10, 813-817. doi:10.3923/javaa.2011.813.817

[13]   Boccia, M.M., Kopf, S.R. and Baratti, C.M. (1999) Phlorizin, a competitive inhibitor of glucose transport, facilitates memory storage in mice. Neurobi-ology of Learning and Memory, 71, 104-112. doi:10.1006/nlme.1998.3856

[14]   Crespy, V., Aprikian, O., Morand, C., Besson, C., Manach, C., Demigne, C. and Reitman, C. (2001) Bioavailability of phloretin and phloridzin in rats. Journal of Nutrition, 131, 3227-3230.

[15]   Burcelin, R., Mre-jen, C., Decaux, J.F., De Mouzon, S.H., Girard, J. and Charron, M.J. (1998) In vivo and in vitro regulation of hepatic glucagon receptor mRNA concentration by glucose metabolism. The Journal of Biological Chemistry, 273, 8088-8093. doi:10.1074/jbc.273.14.8088

[16]   Rossetti, L., Smith, D., Shulman, G.I., Papachristou, D. and DeFronzo, R.A. (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. The Journal of Clinical Investigation, 79, 1510-1515. doi:10.1172/JCI112981

[17]   Ling, Z.C., Hong-Lie, C., ?sten-son, C.-G., Efendic, S. and Khan, A. (2001) Hyperglycemia contributes to impaired insulin response in GK rat islets. Dia-betes, 50, S108-S112. doi:10.2337/diabetes.50.2007.S108

[18]   McCrimmon, R.J., Evans, M.L., Jacob, R.J., Fan, X., Zhu, Y., Shulman, G.I. and Sherwin, R.S. (2002) AICAR and phlorizin reverse the hypo-glycemia-specific defect in glucagon secretion in the diabetic BB rat. American Journal of Physiology—Endocrinology and Metabolism, 283, E1076-E1083.

[19]   Ferre, T., Riu, E., Bosch, F. and Valera, A. (1996) Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. The FASEB Journal, 10, 1213-1218.

[20]   Milagro, F.I., Gómez-Ambrosi, J., Forga, L. and Martinéz, J.A. (1999) A beta3-adrenergic agonist increases muscle GLUT1/GLUT4 ratio, and regulates liver glucose utilization in diabetic rats. Diabetes Obesity and Metabolism, 1, 97-104. doi:10.1046/j.1463-1326.1999.00019.x

[21]   Kim, S.-Y., Kim, H.-I., Park, S.-K., Im, S.-S., Li, T., Cheon, H.G. and Ahn, Y.-H. (2004) Liver glucokinase can be activated by peroxisome pro-liferator-activated receptor-γ. Diabetes, 53, S66-S70. doi:10.2337/diabetes.53.2007.S66

[22]   Rao, P.V., Pugazhenthi, S. and Khandelwal, R.L. (1995) The effects of streptozoto-cininduced diabetes and insulin supplementation on expression of the glycogen phosphorylase gene in rat liver. The Journal of Biological Chemistry, 270, 24955-24960. doi:10.1074/jbc.270.42.24955

[23]   Ribaux, P.G. and Iynedjian, P.B. (2003) Analysis of the role of protein kinase B (cAKT) in insulin-dependent induction of glucokinase and sterol regulatory elementbinding protein 1 (SREBP1) mRNAs in hepato-cytes. Biochemical Journal, 376, 697-705. doi:10.1042/BJ20031287

[24]   Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le, liepvre, X., Berthe-lier-Lubrano, C., Spiegelman, B., Kim, J.B. and Ferre, P. (1999) ADD1/SREBP1c is required in the activation of hepatic lipo-genic gene expression by glucose. Molucular and Cellular Biology, 19, 3760-3768.

[25]   Sparks, J.D., Chamberlain, J.M., O’Dell, C., Khatun, I. and Hussain, M.M. (2011) Acute sup-pression of apo B secretion by insulin occurs independently of MTP. Biochemical and Biophysical Research Communications, 406, 252-256. doi:10.1016/j.bbrc.2011.02.028

[26]   Lally. S., Owens, D. and Tomkin, G.H. (2007) Genes that affect choles-terol synthesis, cholesterol absorption, and chylomicron assembly: The relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism Clinical and Experimental, 56, 430-438. doi:10.1016/j.metabol.2006.10.028

[27]   Phillips, C., Owens, D., Collins, P. and Tomkin, G.H. (2002) Microsomal triglyc-eride transfer protein: Does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis, 160, 355-360. doi:10.1016/S0021-9150(01)00721-3