[1] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, “Graphene/AuNPs/Chitosan Nanocomposites Film for Glucose Biosensing,” Biosensors and Bioelectronics, Vol. 25, No. 5, 2010, pp. 1070-1074. doi:10.1016/j.bios.2009.09.024
[2] Y. Lin, F. Lu, Y. Tu and Z. Ren, “Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles,” Nano Letters, Vol. 4, No. 2, 2004, pp. 191-195. doi:10.1021/nl0347233
[3] H. Wu, W. Cao, G. Liu, Y. Wen, H. Yang and S. Yang, “In Situ Growth of Copper Nanoparticles on Multiwalled Carbon Nanotubes and Their Application as Non-Enzymatic Glucose Sensor Materials,” Electrochimica Acta, Vol. 55, No. 11, 2010, pp. 3734-3740. doi:10.1016/j.electacta.2010.02.017
[4] Y. Liu, D. Zeng, Z. Miao and L. Dai, “Biocompatible Graphene Oxide-Based Glucose Biosensors,” Langmuir, Vol. 26, No. 9, 2010, pp. 6158-6160. doi:10.1021/la100886x
[5] J. Wang and M. Musameh, “Carbon Nanotubes Doped Polypyrrole Glucose Biosensor,” Analytica Chimica Acta, Vol. 539, No. 1-2, 2005, pp. 209-213. doi:10.1016/j.aca.2005.02.059
[6] L. Zhu, R. Yang, J. Zhai and C. Tian, “Bioenzymatic Glu-cose Biosensor Bansed on Co-Immobilization of Peroxi-dase and Glucose Oxidase on a Carbon Nanotubes Electrode,” Biosensors and Bioelectronics, Vol. 23, No. 4, 2007, pp. 528-535. doi:10.1016/j.bios.2007.07.002
[7] K. Zhou, Y. Zhu, X. Yang and C. Li, “Electrcatalytic Oxi- dation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite,” Electroanalysis, Vol. 22, No. 3, 2010, pp. 259-264. doi:10.1002/elan.200900321
[8] C. Shan, H. Yang, J. Song, D. Han, A. Invaska and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Analytical Chemistry, Vol. 81, No. 6, 2009, pp. 2378-2382. doi:10.1021/ac802193c
[9] H. Tang, J. Chen, S. Yao, L. Nie, G. Deng and Y. Kuang, “Amperometric Glucose Biosensor Based on Adsorption of Glucose Oxidase at Platinum Nanoparticle-Modified Carbon Nanotube Electrode,” Analytical Biochemistry, Vol. 331, No. 1, 2004, pp. 89-97.
[10] G. G. Wallace, M. Smyth and H. Zhao, “Conducting Electroactive Polymer-Based Biosensors,” Trends in Analytical Chemistry, Vol. 18, No. 4, 1999, pp. 245-251. doi:10.1016/S0165-9936(98)00113-7
[11] K. I. Ozoemena and T. Nyokong, “Novel Amperometric Glucose Biosensor Based on an Ether-Linked Cobalt(II) Phthalocyanine-Cobalt(II) Tetraphenylporohyrin Pentamet as a Redox Mediator,” Electrochimica Acta, Vol. 51, No. 24, 2006, pp. 5131-5136. doi:10.1016/j.electacta.2006.03.055
[12] J. Ye, Y. Wen, W. Zhang, H. Cui, G. Xu and F. S. Sheu, “Electrochemical Biosensing Platforms Using Phthalocya-nine-Functionalized Carbon Nanotube Electrode,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 89-96. doi:10.1002/elan.200403124
[13] L. Zhu, J. Zhai, Y. Guo, C. Tian and R. Yang, “Amper-ometric Glucose Biosensors Based on Integration of Glucose Oxidase onto Prussian Blue/Carbon Nanotubes Na- nocomposite Electrodes,” Electroanalysis, Vol. 18, No. 18, 2006, pp. 1842-1846. doi:10.1002/elan.200603594
[14] L. Zhu, R. Yang, J. Zhai and C. Tian, “Bienzymatic Glucose Biosensor Based on Co-Immobilization of Peroxidase and Glucose Oxidase on a Carbon Nanotubes343 Electrode,” Biosensors and Bioelectronics, Vol. 23, No. 4, 2007, pp. 528-535. doi:10.1016/j.bios.2007.07.002
[15] S. Hrapovic, Y. Liu, K. B. Male and J. H. T. Luong, “Electrochemical Biosensing Platforms Using Platinum Nano-particles and Carbon Nanotubes,” Analytical Chemistry, Vol. 76, No. 4, 2004, pp. 1083-1088. doi:10.1021/ac035143t
[16] N. German, A. Ramanaviciene, J. Voronovic and A. Ramanavicius, “Glucose Biosensor Based on Graphite Modified with Oxidase and Colloidal Gold Nanoparticles,” Microchimica Acta, Vol. 168, No. 3-4, 2010, pp. 221- 229. doi:10.1007/s00604-009-0270-z
[17] J. C. Claussen, A. D. Franklin, A. Haque, D. M. Porterfield and T. S. Fisher, “Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks,” ACS Nano, Vol. 3, No. 1, 2009, pp. 37-44. doi:10.1021/nn800682m
[18] S. A. Miscoria, G. D. Barrera and G. A. Rivas, “Analytical Performance of Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode,” Electroanalysis, Vol. 14, No. 14, 2002, pp. 981-987. doi:10.1002/1521-4109(200208)14:14<981::AID-ELAN981>3.0.CO;2-1
[19] X. Jiang, Y. Wu, X. Mao, X. Cui and L. Zhu, “Amperometric Glucose Biosensor Based on Integration of Glucose Oxidase with Platinum Nanoparticles/Ordered Mes-oporous Carbon Nanocomposite,” Sensors and Actuators B: Chemical, Vol. 153, No. 1, 2011, pp. 158-163. doi:10.1016/j.snb.2010.10.023
[20] Y. Wang, Y. Li, L. Tang, J. Lu and J. Li, “Application of Graphene-Modified for Selective Detection of Dopamine,” Electrochemistry Communications, Vol. 11, No. 4, 2009, pp. 889-892. doi:10.1016/j.elecom.2009.02.013
[21] Z. Liu, Y. Xu, X. Zhang, X. Zhang, Y. Chen and J. Tian, “Prophyrin and Fullerene Cocalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties,” Journal of Physical Chemistry B, Vol. 113, No. 29, 2009, pp. 9681-9686. doi:10.1021/jp9004357
[22] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, “Controlled Synthesis of large-Area and Parrerned Electrochemically Reduced Graphene Oxide Films,” Journal of European Chemistry, Vol. 15, No. 25, 2009, pp. 6116-6120. doi:10.1002/chem.200900596
[23] S. Wang. P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong and K. P. Loh, “High Mobility, Printable, and Solution-Processed Graphene Electronics,” Nano Letters, Vol. 10, No. 1, 2010, pp. 92-98. doi:10.1021/nl9028736
[24] G. Eda, G. Fanchini and M. N. Chhowalla, “Large-Area Ultrathin Films of Reduced Graphene Oxide as a Trans-parent and Flexible Electronic Material,” Nanotechnology, Vol. 3, No. 5, 2008, pp. 270-274.
[25] X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, “A Graphene-Based Electrochemical Sensor for Sensitive Detection of Paracetamol,” Talanta, Vol. 81, No. 3, 2010, pp. 754-759. doi:10.1016/j.talanta.2010.01.009
[26] Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim and H. Kim, “Electrochemical Detection of Do- pamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes,” Biosensors and Bioelectronics, Vol. 25, No. 10, 2010, pp. 2366-2369. doi:10.1016/j.bios.2010.02.031
[27] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska and L. Niu, “Electrochemical Determination of NADH and Etha-nol Based on Ionic Liquid-Functionalized Graphene,” Bio-sensors and Bioelectronics, Vol. 25, No. 6, 2010, pp. 1504-1508. doi:10.1016/j.bios.2009.11.009
[28] C. N. R. Rao, A. K. Subrahmanyam and A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial,” Angewandte Chemie, Vol. 48, No. 42, 2009, pp. 7752-7777. doi:10.1002/anie.200901678
[29] Z. Liu, J. Y. Lee, W. Chen, M. Han and L. Gan, “Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported Pt Ru Nanoparticles,” Langmuir, Vol. 20, No. 1, 2004, pp. 181- 187. doi:10.1021/la035204i
[30] M. S. Goh and M. Pumera, “The Electrochemical Re- sponse of Graphene Sheets Is Independent of the Number of Layers from a Single Graphene Sheets to Multilayer Stacked Graphene Platelets,” Chemistry—An Asian Journal, Vol. 5, No. 11, 2010, pp. 2355-2357. doi:10.1002/asia.201000437
[31] M. S. Goh and M. Pumera, “Single-, Few-, and Multi-layer Graphene Not Exhibiting Significant Advantages over Graphite Micoropartcles in Electroanalysis,” Analytical Chemistry, Vol. 82, No. 19, 2010, pp. 8367-8370. doi:10.1021/ac101996m
[32] P. Santhosh, K. M. Manesh, S. Uthayakumar, S. Uthaya-kumar, S. Komathi, A. I. Gopalan and K. P. Lee, “Fabrication of Enzymatic Glucose Biosensor Based on Palladium Nanoparticles Dispersed onto Poly (3,4-Ethylene- dioxythiophene) Nanofibers,” Bioelectrochemistry, Vol. 75, No. 1, 2009, pp. 61-66. doi:10.1016/j.bioelechem.2008.12.001
[33] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang and S. Dong, “Controlled Synthesis of Large-Area and Parrerned Electrochemically Reduced Graphene Oxide Films,” Journal of European Chemistry, Vol. 15, No. 25, 2009, pp. 6116-6120. doi:10.1002/chem.200900596
[34] Z. Liu, Y. Xu, X. Zhang, X. Zhang, Y. Chen and J. Tian, “Prophyrin and Fullerene Cocalently Functionalized Graphene Hybrid Materials with Large Nonlinear Optical Properties,” Journal of Physical Chemistry B, Vol. 113, No. 29, 2009, pp. 9681-9686. doi:10.1021/jp9004357
[35] W. J. Ho, C. J. Yuan and O. Reiko, “Application of SiO2- Poly (Dimethylsiloxane) Hybrid Material in the Fabrica- tion of Ampermnetric Biosensor,” Analyca Chimica Acta, Vol. 572, No. 2, 2009, pp. 248-252. doi:10.1016/j.aca.2006.05.022
[36] J. C. Claussen, A. D. Franklin, A. U. Haque, D. M. Porterfield and T. Fisher, “Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks,” ACS Nano, Vol. 3, No. 1, 2009, pp. 37-44.
[37] F. Xiao, F. Zhao, D. Mei, Z. Mo and B. Zeng, “Nonenzymatic Glucose Sensor Based on Ultrasonic-Electrode- position of Bimetallic PtM (M = Ru, Pd, and Au) Nano-particles on Carbon Nanotubes-Ionic Liquid Composite Film,” Biosensors and Bioelectronics, Vol. 24, No. 12, 2009, pp. 3481-3486. doi:10.1016/j.bios.2009.04.045
[38] S. H. Lim, J. Wei, J. Lin, Q. Li and J. KuaYou, “A Glu- cose Biosensor Based on Electrodeposition of Palladium Nanoparticles and Glucose Oxidase onto Nafion-Solubilized Carbon Nanotube Electrode,” Biosensors and Bio-electronics, Vol. 20, No. 12, 2005, pp. 2341-2346. doi:10.1016/j.bios.2004.08.005
[39] R. A. Kamin and G. S. Wilson, “Rotating Ring-Disk Enzyme Electrode for Biocatalysis Kinetic Studies and Characterization of the immobilized Enzyme Layer,” Analytical Chemistry, Vol. 52, No. 8, 1980, pp. 1198-1205. doi:10.1021/ac50058a010