OJOG  Vol.2 No.1 , March 2012
Vascular markers CD31, CD34, actin, VEGFB, and VEGFR2, are prognostic markers for malignant development in benign endometrial polyps
ABSTRACT
Intention of the study: The prevalence of endometrial polyps has been demonstrated in between 10% and 35% of all women, but knowledge regarding malignant potential within polyps is limited. Even though premalignant and malignant changes have been reported in up to 24% of all cases, no objective tissue markers have ever been developed for routine diagnostics to select high risk cases. As vascular changes and activation of endometrial angiogenesis has been demonstrated in former studies, our main objective was to evaluate different members of the angiogenic pathway as potential risk factors for cancer development. Patients and methods: Formalin-fixed, paraffin-embedded tissue from 15 women with benign endometrial polyps, and 16 women diagnosed with endometrial cancer were included. Immunohistochemical investigation with antibodies against VEGF, VEGF-B, VEGFR2, VEGFR3, CD31, CD34, actin, and factorVIII was performed, followed by evaluation of staining intensity of microvessels, evaluation of H-score in glands (cell membrane, cytoplasm) and stroma, and measurement of micro vessel density. Results: Expression of CD31 in microvessels was significantly stronger in cancers compared to endometrial polyps (P = 0.006 for arterioles, P = 0.038, for venyles, and P = 0.002 for capillaries, respectively), whereas, a reverse change was shown for CD34. Expression of actin in capillary walls was also significantly increased in cancers compared to polyps (P = 0.002). No significant difference was found for staining intensity in microvessels (arterioles, venyles or capillaries) in endometrial benign polyps compared with endometrial cancers for VEGF, VEGFB, VEGFR2, VEGFR3, or Factor VIII. Also no difference in H-score values between benign polyps and endometrial cancers could be detected in glandular epithelium, in epithelial cell membrane or in stroma for VEGFR3, CD31 or Factor VIII. Conclusions: The present study strongly indicates that activation of angiogenesis differs in benign endometrial polyps and endometrial cancers. Thus, immunohistochemical expression of specific angiogenic markers may be of great importance as prognostic factors in the routine diagnostics of this lesion. The ratio between stromal expression of CD34 and actin might be of particular interest to select polyps with increased malignant potential.

Cite this paper
Hvingel, B. , Lieng, M. , Roald, B. and Ørbo, A. (2012) Vascular markers CD31, CD34, actin, VEGFB, and VEGFR2, are prognostic markers for malignant development in benign endometrial polyps. Open Journal of Obstetrics and Gynecology, 2, 18-26. doi: 10.4236/ojog.2012.21004.
References
[1]   Anastasiadis, P.G., Koutlaki, N.G., Skaphida, P.G., Galazios, G.C., Tsikouras, P.N. and Liberis, V.A. (2000) Endometrial polyps: Prevalence, detection, and malignant potential in women with abnormal uterine bleeding. European Journal of Gynaecological Oncology, 21, 180-183.

[2]   Clevenger-Hoeft, M., Syrop, C.H., Stovall, D.W. and Van Voorhis, B.J. (1999) Sonohysterography in premenopausal women with and without abnormal bleeding. Obstetrics & Gynecology, 94, 516-520. doi:10.1016/S0029-7844(99)00345-2

[3]   Cohen, I. (2004) Endometrial pathologies associated with postmenopausal tamoxifen treatment. Gynecologic Oncology, 94, 256-266. doi:10.1016/j.ygyno.2004.03.048

[4]   Van Bogaert, L.J. (1988) Clinicopathologic findings in endometrial polyps. Obstetrics & Gynecology, 71, 771-773.

[5]   Lieng, M., Qvigstad, E., Sandvik, L., Jorgensen, H., Langebrekke, A. and Istre, O. (2007) Hysteroscopic resection of symptomatic and asymptomatic endometrial polyps. Journal of Minimally Invasive Gynecology, 14, 189-194. doi:10.1016/j.jmig.2006.09.018

[6]   Mutter, G.L., Nucci, M.R. and Robboy, S.J. (2010) Endometritis, polyps and miscellaneous changes. Curchill Livingstone Elsevier, Edinburgh, 343-366.

[7]   Bakour, S.H., Khan, K.S. and Gupta, J.K. (2000) The risk of premalignant and malignant pathology in endometrial polyps. Acta Obstetricia et Gynecologica Scandinavica, 79, 317-320. doi:10.1080/j.1600-0412.2000.079004317.x

[8]   Deligdisch, L., Kalir, T., Cohen, C.J., De, L.M., Le, B.G. and Penault-Llorca, F. (2000) Endometrial histopathology in 700 patients treated with tamoxifen for breast cancer. Gynecologic Oncology, 78, 181-186. doi:10.1006/gyno.2000.5859

[9]   Pettersson, B., Adami, H.O., Lindgren, A. and Hesselius, I. (1985) Endometrial polyps and hyperplasia as risk factors for endometrial carcinoma. A case-control study of curettage specimens. Acta Obstetricia et Gynecologica Scandinavica, 64, 653-659. doi:10.3109/00016348509158208

[10]   Baak, J.P., Wisse-Brekelmans, E.C., Fleege, J.C., Van der Putten, H.W. and Bezemer, P.D. (1992) Assessment of the risk on endometrial cancer in hyperplasia, by means of morphological and morphometrical features. Pathology Research and Practice, 188, 856-859. doi:10.1016/S0344-0338(11)80244-X

[11]   Horn, L.C., Schnurrbusch, U., Bilek, K., Hentschel, B. and Einenkel, J. (2004) Risk of progression in complex and atypical endometrial hyperplasia: Clinicopathologic analysis in cases with and without progestogen treatment. International Journal of Gynecological Cancer, 14, 348- 353. doi:10.1111/j.1048-891x.2004.014220.x

[12]   Kurman, R.J., Kaminski, P.F. and Norris, H.J. (1985) The behavior of endometrial hyperplasia. A long-term study of “untreated” hyperplasia in 170 patients. Cancer, 56, 403-412. doi:10.1002/1097-0142(19850715)56:2<403::AID-CNCR2820560233>3.0.CO;2-X

[13]   Pennant, S., Manek, S. and Kehoe, S. (2008) Endometrial atypical hyperplasia and subsequent diagnosis of endometrial cancer: A retrospective audit and literature review. Journal of Obstetrics & Gynaecology, 28, 632-633. doi:10.1080/01443610802355817

[14]   Lieng, M., Qvigstad, E., Dahl, G.F. and Istre, O. (2008) Flow differences between endometrial polyps and cancer: A prospective study using intravenous contrast-enhanced transvaginal color flow Doppler and three-dimensional power Doppler ultrasound. Ultrasound in Obstetrics & Gynecology, 32, 935-940. doi:10.1002/uog.6267

[15]   Mints, M., Blomgren, B., Falconer, C. and Palmblad, J. (2002) Expression of the vascular endothelial growth factor (VEGF) family in human endometrial blood vessels. Scandinavian Journal of Clinical and Laboratory Investigation, 62, 167-175. doi:10.1080/003655102317475425

[16]   Erdem, O., Erdem, M., Erdem, A., Memis, L. and Akyol, G. (2007) Expression of vascular endothelial growth factor and assessment of microvascular density with CD 34 and endoglin in proliferative endometrium, endometrial hyperplasia, and endometrial carcinoma. International Journal of Gynecological Cancer, 17, 1327-1332. doi:10.1111/j.1525-1438.2007.00942.x

[17]   Kaku, T., Yoshikawa, H., Tsuda, H., Sakamoto, A., Fukunaga, M., Kuwabara, Y., Hataeg, M., Kodama, S., Kuzuya, K., Sato, S., Nishimura, T., Hiura, M., Nakano, H., Iwasaka, T., Miyazaki, K. and Kamura, T. (2001) Conservative therapy for adenocarcinoma and atypical endometrial hyperplasia of the endometrium in young women: Central pathologic review and treatment outcome. Cancer Letters, 167, 39-48. doi:10.1016/S0304-3835(01)00462-1

[18]   Guset, G., Costi, S., Lazar, E., Dema, A., Cornianu, M., Vernic, C. and Paiusan, L. (2010) Expression of vascular endothelial growth factor (VEGF) and assessment of microvascular density with CD34 as prognostic markers for endometrial carcinoma. Romanian Journal of Morphology and Embryology, 51, 677-682.

[19]   Huang, A., Pettigrew, N.M. and Watson, P.H. (1996) Immunohistochemical assay for oestrogen receptors in paraffin wax sections of breast carcinoma using a new monoclonal antibody. Journal of Pathology, 180, 223-227. doi:10.1002/(SICI)1096-9896(199610)180:2<223::AID-PATH635>3.0.CO;2-H

[20]   Vermeulen, P.B., Gasparini, G., Fox, S.B., Toi, M., Martin, L., McCulloch, P., Pezzella, F., Viale, G., Weidner, N., Harris, A.L. and Dirix, L.Y. (1996) Quantification of angiogenesis in solid human tumours: An international consensus on the methodology and criteria of evaluation. European Journal of Cancer, 32A, 2474-2484. doi:10.1016/S0959-8049(96)00379-6

[21]   Savelli, L., De, I.P., Santini, D., Rosati, F., Ghi, T., Pignotti, E. and Bovicelli, L. (2003) Histopathologic features and risk factors for benignity, hyperplasia, and cancer in endometrial polyps. American Journal of Obstetrics & Gynecology, 188, 927-931. doi:10.1067/mob.2003.247

[22]   Ferrazzi, E., Zupi, E., Leone, F.P., Savelli, L., Omodei, U., Moscarini, M., Barbieri, M., Cammareri, G., Capobianco, G., Cicinelli, E., Coccia, M.E., Donarini, G., Fiore, S., Litta, P., Sideri, M., Solima, E., Spazzini, D., Testa, A.C. and Vignali, M. (2009) How often are endometrial polyps malignant in asymptomatic postmenopausal women? A multicenter study. American Journal of Obstetrics & Gynecology, 200, 235-236. doi:10.1016/j.ajog.2008.09.876

[23]   Rahimi, S., Marani, C., Renzi, C., Natale, M.E., Giovannini, P. and Zeloni, R. (2009) Endometrial polyps and the risk of atypical hyperplasia on biopsies of unremarkable endometrium: A study on 694 patients with benign endometrial polyps. International Journal of Gynecological Pathology, 28, 522-528. doi:10.1097/PGP.0b013e3181a42228

[24]   Barth, P.J., Ramaswamy, A. and Moll, R. (2002) CD34(+) fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch, 441, 564-568. doi:10.1007/s00428-002-0713-y

[25]   Li, Q., Huang, W. and Zhou, X. (2009) Expression of CD34, alpha-smooth muscle actin and transforming growth factor-beta1 in squamous intraepithelial lesions and squamous cell carcinoma of the cervix. Journal of International Medical Research, 37, 446-454.

[26]   Barth, P.J., Ebrahimsade, S., Ramaswamy, A. and Moll, R. (2002) CD34+ fibrocytes in invasive ductal carcinoma, ductal carcinoma in situ, and benign breast lesions. Virchows Arch, 440, 298-303. doi:10.1007/s004280100530

[27]   Yamashita, M., Ogawa, T., Zhang, X., Hanamura, N., Kashikura, Y., Takamura, M., Yoneda, M. and Shiraishi, T. (2010) Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer.

[28]   Nakayama, H., Enzan, H., Miyazaki, E., Kuroda, N., Naruse, K. and Hiroi, M. (2000) Differential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. Journal of Clinical Pathology, 53, 626-629. doi:10.1136/jcp.53.8.626

[29]   Tachezy, M., Reichelt, U., Melenberg, T., Gebauer, F., Izbicki, J.R. and Kaifi, J.T. (2010) Angiogenesis index CD105 (endoglin)/CD31 (PECAM-1) as a predictive factor for invasion and proliferation in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Histology and Histopathology, 25, 1239-1246.

[30]   Koukourakis, M.I., Limberis, V., Tentes, I., Kontomanolis, E., Kortsaris, A., Sivridis, E. and Giatromanolaki, A. (2011) Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine, 53, 370-375. doi:10.1016/j.cyto.2010.12.007

[31]   Shibuya, M. (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. Journal of Biochemistry and Molecular Biology, 39, 469-478. doi:10.5483/BMBRep.2006.39.5.469

 
 
Top