IJMNTA  Vol.1 No.1 , March 2012
Chaotic and Hyperchaotic Complex Jerk Equations
The aim of this paper is to introduce and investigate chaotic and hyperchaotic complex jerk equations. The jerk equations describe various phenomena in engineering and physics, for example, electrical circuits, laser physics, mechanical oscillators, damped harmonic oscillators, and biological systems. Properties of these systems are studied and their Lyapunov exponents are calculated. The dynamics of these systems is rich in wide range of systems parameters. The control of chaotic attractors of the complex jerk equation is investigated. The Lyapunov exponents are calculated to show that the chaotic behavior is converted to regular behavior.

Cite this paper
G. Mahmoud and M. Ahmed, "Chaotic and Hyperchaotic Complex Jerk Equations," International Journal of Modern Nonlinear Theory and Application, Vol. 1 No. 1, 2012, pp. 6-13. doi: 10.4236/ijmnta.2012.11002.
[1]   E. N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of Atmospheric Sciences, Vol. 20, No. 2, 1963, pp. 130- 141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

[2]   O. E. R?ssler, “An Equation for Continuous chaos,” Physics Letters A, Vol. 57, No. 5, 1976, pp. 397-398. doi:10.1016/0375-9601(76)90101-8

[3]   O. E. Rossler, “An Equation for Hyperchaos,” Physics Letters A, Vol. 71, No. 2-3, 1979, pp. 155-157. doi:10.1016/0375-9601(79)90150-6

[4]   J. C. Sprott, “Simple Chaotic Systems and Circuits,” American Journal of Physicals, Vol. 68, No. 8, 2000, pp. 758-763. doi:10.1119/1.19538

[5]   J. C. Sprott, “Some Simple Chaotic Flows,” Physical Review E, Vol. 50, No. 2, 1994, pp. R647-R650. doi:10.1103/PhysRevE.50.R647

[6]   H. P. W. Gottlieb, “Question #38. What Is the Simplest Jerk Function That Gives Chaos?” American Journal of Physicals, Vol. 64, No. 5, 1996, p. 525. doi:10.1119/1.18276

[7]   S. J. Linz, “Nonlinear Dynamical Models and Jerk Motion,” American Journal of Physicals, Vol. 65, No. 6, 1997, pp. 523-526. doi:10.1119/1.18594

[8]   J. C. Sprott, “Some Simple Chaotic Jerk Functions,” American Journal of Physicals, Vol. 65, No. 6, 1997, pp. 537-543. doi:10.1119/1.18585

[9]   J.-M. Malasoma, “What Is the Simplest Dissipative Chaotic Jerk Equation Which Is Parity Invariant,” Physics Letters A, Vol. 264, No. 5, 2000, pp. 383-389. doi:10.1016/S0375-9601(99)00819-1

[10]   F. Zhang, J. Heidel and R. L. Borne, “Determining Nonchaotic Parameter Regions in Some Simple Jerk Functions,” Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 862-873. doi:10.1016/j.chaos.2006.07.005

[11]   R. Eichhorn, S. J. Linz and P. H?nggi, “Simple Polynomial Classes of Chaotic Jerk Dynamics,” Chaos, Solitons & Fractals, Vol. 13, No. 1, 2002, pp. 1-15. doi:10.1016/S0960-0779(00)00237-X

[12]   S. J. Linz, “Non-Chaos Criteria for Certain Jerk Dynamics,” Physics Letters A, Vol. 275, No. 3, 2000, pp. 204- 210. doi:10.1016/S0375-9601(00)00576-4

[13]   J. C. Sprott, “Chaos and Time-Series Analysis,” Oxford University Press, New York, 2003.

[14]   L. M. Koci? and S. Gegovska-Zajkova, “On a Jerk Dynamical System,” Automatic Control and Robotics, Vol. 8, 2009, pp. 35-44.

[15]   G. M. Mahmoud and T. Bountis, “The Dynamics of Systems of Complex Nonlinear Oscillators,” International Journal of Bifurcation and Chaos, Vol. 14, No. 1, 2004, pp. 3821-3846. doi:10.1142/S0218127404011624

[16]   G. M. Mahmoud, M. E. Ahmed and E. E. Mahmoud, “Analysis of Hyperchaotic Complex Lorenz Systems,” International Journal of Modern Physics C, Vol. 19, No. 10, 2008, pp. 1477-1494. doi:10.1142/S0129183108013151

[17]   G. M. Mahmoud, M. A. Al-Kashif and A. A. Farghaly, “Chaotic and Hyperchaotic Attractors of a Complex Nonlinear System” Journal of Physicss A: Mathematical and Theoretical, Vol. 41, No. 5, 2008, pp. 55-104. doi:10.1088/1751-8113/41/5/055104

[18]   G. M. Mahmoud, E. E. Mahmoud and M. E. Ahmed, “On the Hyperchaotic Complex Lü System,” Nonlinear Dynamics, Vol. 58, No. 4, 2008, pp. 725-738. doi:10.1007/s11071-009-9513-0

[19]   G. M. Mahmoud, T. Bountis, M. A. Al-Kashif and S. A. Aly, “Dynamical properties and synchronization of complex non-linear equations for detuned laser,” J. Dynamical Systems: An International Journal, Vol. 24, No. 1, 2009, pp. 63-79. doi:10.1080/14689360802438298

[20]   G. M. Mahmoud and E. E. Mahmoud, “Synchronization and Control of Hyperchaotic Complex Lorenz System,” Mathematics and Computers in Simulation, Vol. 80, No. 12, 2010, pp. 2286-2296. doi:10.1016/j.matcom.2010.03.012

[21]   G. M. Mahmoud, and E. E. Mahmoud, “Complete Synchronization of Chaotic Complex Nonlinear Systems with Uncertain Parameters,” Nonlinear Dynamics, Vol. 62, No. 4, 2010, pp. 875-882. doi:10.1007/s11071-010-9770-y