IJMNTA  Vol.1 No.1 , March 2012
State Reconstruction for Complex Dynamical Networks with Noises
ABSTRACT
The state reconstruction problem is addressed for complex dynamical networks coupled with states and outputs respectively, in a noisy transmission channel. By using Lyapunov stability theory and H performance, two schemes of state reconstruction are proposed for the complex dynamical networks with the nodes coupled by states and outputs respectively, and the estimation errors are convergent to zeros with H performance index. A numerical simulation demonstrates the effectiveness of the proposed observers.

Cite this paper
C. Fan and G. Jiang, "State Reconstruction for Complex Dynamical Networks with Noises," International Journal of Modern Nonlinear Theory and Application, Vol. 1 No. 1, 2012, pp. 1-5. doi: 10.4236/ijmnta.2012.11001.
References
[1]   S. H. Strogatz, “Exploring Complex Networks,” Nature, Vol. 410, No. 8, 2001, pp. 268-276. doi:10.1038/35065725

[2]   E. De Silva and M. P. H. Stumpf, “Complex Networks and Simple Models in Biology,” Journal of the Royal Society Interface, Vol. 2, No. 5, 2005, pp. 419-430. doi:10.1098/rsif.2005.0067

[3]   T. A. S. Pardo, L. Antiqueira, M. D. G. Nunes, O. N. Oliveira and L. D. F. Costa, “Using Complex Networks for Language Processing: The Case of Summary Evaluation,” 2006 International Conference on Communications, Circuits and Systems Proceedings, Guilin, 25-28 June 2006, pp. 2678-2682. doi:10.1109/ICCCAS.2006.285222

[4]   S. J. Harrison and J. R. Dickinson, “A Metabolomic Analysis of Yeast Deletion Mutants Reveals Complex Networks of Control,” Yeast, Vol. 20, No. S1, 2003, pp. S220- S220.

[5]   M. Chen and Tsinghua Univ, “Chaos Synchronization in Complex Networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 5, 2008, pp. 1335- 1346. doi:10.1109/TCSI.2008.916436

[6]   X. F. Wang and G. Chen, “Synchronization in Scale Free Dynamical Networks: Robustness and Fragility,” IEEE Transaction on Circuits Systems I: Fundamental Theory and Applications, Vol. 49, No. 1, 2002, pp. 54-62. doi:10.1109/81.974874

[7]   X. Li and G. Chen, “Synchronization and Desynchronization of Complex Dynamical Networks: An Engineering Viewpoint,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, No. 11, 2003, pp. 1381-1390. doi:10.1109/TCSI.2003.818611

[8]   R. Carli, A. Chiuso, L. Schenato and S. Zampieri, “Optimal Synchronization for Networks of Noisy Double Integrators,” IEEE Transactions on Automatic Control, Vol. 56, No. 5, 2011, pp. 1146-1152. doi:10.1109/TAC.2011.2107051

[9]   G. Wang, J. Cao and J. Lu, “Outer Synchronization between Two Nonidentical Networks with Circumstance Noise,” Physica A: Statistical and Its Applications, Vol. 389, No. 7, 2010, pp. 1480-1488. doi:10.1016/j.physa.2009.12.014

[10]   C.-X. Fan, G.-P. Jiang and F.-H. Jiang, “Synchronization between Two Complex Dynamical Networks Using Scalar Signals under Pinning Control,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 11, 2010, pp. 2991-2998. doi:10.1109/TCSI.2010.2048774

[11]   X. Q. Wu, W. X. Zheng and J. Zhou, “Generalized Outer Synchronization between Complex Dynamical Networks,” Chaos, Vol. 19, No. 1, 2009, p. 013109. doi:10.1063/1.3072787

[12]   G.-P. Jiang, W. K.-S. Tang and G. Chen, “A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 53, No. 12, 2006, pp. 2739-2745. doi:10.1109/TCSI.2006.883876

[13]   R. M. Gutierrez-Ríos, J. A. Freyre-Gonzalez, O. Resendis, J. Collado-Vides, M. Saier and G. Gosset, “Identification of Regulatory Network Topological Units Coordinating the Genome-Wide Transcriptional Response to Glucose in Escherichia coli,” BMC Microbiology, Vol. 7, No. 53, 2007. doi:10.1186/1471-2180-7-53

[14]   W. K. S. Tang and L. Kocarev, “Identification and Monitoring of Biological Neural Network,” IEEE International Symposium on Circuits and Systems, New Orleans, 27-30 May 2007, pp. 2646-2649. doi:10.1109/ISCAS.2007.377957

[15]   J. Zhou and J.-A. Lu, “Topology Identification of Weighted Complex Dynamical Networks,” Physica A: Statistical Mechanics and Its Applications, Vol. 386, No. 1, 2007, pp. 481-491. doi:10.1016/j.physa.2007.07.050

[16]   H. Liu, G.-P. Jiang and C.-X. Fan, “State-Observer-Based Approach for Identification and Monitoring of Complex Dynamical Networks,” 2008 IEEE Asia Pacific Conference on Circuits and Systems (Apccas 2008), Macao, 30 November-3 December 2008, pp. 1212-1215. doi:10.1109/APCCAS.2008.4746244

[17]   H. Liu, J. N. Lu and J. H. Lu, “Topology Identification of an Uncertain General Complex Dynamical Network,” Proceedings of 2008 IEEE International Symposium on Circuits and Systems, Seattle, 18-21 May 2008, pp. 109-112. doi:10.1109/ISCAS.2008.4541366

[18]   X. Wu, “Synchronization-Based Topology Identification of Weighted General Complex Dynamical Networks with Time-Varying Coupling Delay,” Physica A: A-Statistical Mechanics and Its Applications, Vol. 387, No. 4, 2008, pp. 997-1008. doi:10.1016/j.physa.2007.10.030

[19]   W. Guo, S. Chen and W. Sun, “Topology Identification of the Complex Networks with Non-Delayed and Delayed Coupling,” Physics Letters A, Vol. 373, No. 41, 2009, pp. 3724-3729. doi:10.1016/j.physleta.2009.08.054

[20]   H. Liu, J.-A. Lu, J. Lü and D. J. Hill, “Structure Identification of Uncertain General Complex Dynamical Networks with Time Delay,” Automatica, Vol. 45, No. 8, 2009, pp. 1799-1807. doi:10.1016/j.automatica.2009.03.022

[21]   G.-P Jiang, W. X. Zheng, W. K.-S. Tang and G. Chen, “Integral-Observer-Based Chaos Synchronization,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 2, 2006, pp. 110-114. doi:10.1109/TCSII.2005.857087

[22]   Y. Liu, Z. Wang, J. Liang and X. Liu, “Synchronization and State Estimation for Discrete-Time Complex Networks with Distributed Delays,” IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 38, No. 5, 2008, pp. 1314-1324. doi:10.1109/TSMCB.2008.925745

[23]   K. K. Busawon and P. Kaboreb, “Disturbance Attenuation Using Proportional Integral Observers,” International Journal of Control, Vol. 74, No. 6, 2001, pp. 618-627. doi:10.1080/00207170010025249

 
 
Top