AJAC  Vol.3 No.3 , March 2012
Structural, Thermal and Optical Studies of Oxypeucedanin Hydrate Monoacetate Micro-Crystals from Prangos pabularia
Abstract: Oxypeucedanin hydrate monoacetate (Mol. Formula = C18H18O7) micro-crystals were obtained by acetylation of oxy-peucedanin hydrate, a furanocoumarin, isolated from the roots of Prangos pabularia. The composition related structural, thermal and optical properties were investigated. All the crystals were found to have triclinic structure. From thermal studies of these crystals, stability, melting point and other relevant informations were obtained. Their blue emission, less absorption in entire visible range and band gap predicts these crystals as good candidate for modern optoelectronic devices.
Cite this paper: J. Ahmad Banday, F. Ahmad Mir, S. Farooq, M. Ahmad Qurishi, S. Koul and T. Kishen Razdan, "Structural, Thermal and Optical Studies of Oxypeucedanin Hydrate Monoacetate Micro-Crystals from Prangos pabularia," American Journal of Analytical Chemistry, Vol. 3 No. 3, 2012, pp. 204-209. doi: 10.4236/ajac.2012.33029.

[1]   Ch. Bosshard, K. Sutter, Ph. Pretre. J. Hulliger, M. Fl?r-sheimer, P. Kaatz and P. Gunter, “Organic Nonlinear Optical Materials,” Gordon and Breach, New York, 1995.

[2]   H. E. Huitema, G. H. Gelinck, E. Van Veenendaal, E. Cantatore, F. J. Touwslager, et al., “Aflexible QVGA Display with Organic Transistors,” IDW (Informations-Di- enst-Wissenschaft), 1663.

[3]   G. Darlinski, U. Ottger, R. Aser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid and C. Dehm, “Mechanical Force Sensors Using Organic Thin-Film Transisors,” Journal of Applied Physics, Vol. 97, No. 9, 2005, Article ID 093708. doi:10.1063/1.1888046

[4]   B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger and Z. Bao, “Electronic Sensing of Vapors with Organic Transistors,” Applied Physical Letters, Vol. 78, No. 14, 2001, pp. 2229-2231.

[5]   B. H. Robinson and N. C. Seaman, “The Design of a Biochip: A Self-Assembling Molecular-Scale Memory Device,” Protein Engineering, Vol. 1, No. 4, 19872, pp. 295-300.

[6]   F.-J. M. zu Heringdorf, M. C. Reuter and R. M. Tromp, “Growth Dynamics of Pentacene Thin Films,” Nature, Vol. 412, No. 6846, 2001, pp. 517-520. doi:10.1038/35087532

[7]   A. Turberfield, “Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication,” Physics World, Vol. 43, 2003, p. 16.

[8]   P. Damman, M. Doseire, P. Smith and J. C. Wittmann, “Orientation of p-Nitrophenol Molecules Induced by Epi- taxial Crystal-lization on Friction-Transferred Poly (Tetra- fluoroethylene) Substrates,” Journals American Chemical Society, Vol. 117, No. 3, 1995, pp. 1117-1120. doi:10.1021/ja00108a030

[9]   P. Damman, M. Doseire, M. Bmnel and J. C. Wittmann, “Nucleation and Oriented Growth of Aromatic Crystals on Frition-Transferred Poly (Tetrafluo-roe-Thylene) Layers,” Journals American Chemical Society, Vol. 119, No. 20, 1997, pp. 4633-4639. doi:10.1021/ja961173k

[10]   G. F. Lipscomb, A. F. Garito and R. S. Narang, “An Exceptionally Large Linear Electro-Optic Effect in the Organic Solid MNA,” Journal of Chemical Physics, Vol. 75, No. 3, 1981, p. 1509. doi:10.1063/1.442157

[11]   Y. J. Ding, X. Mu, X. Gu, Y. J. Ding, X. Mu and X. Gu, “Growth, Optical, Thermal and Di-electric Studies of an Amino Acid Organic Nonlinear Optical Material: l-Alanine,” Journal of Nonlinear Optical Physics and Materials, Vol. 9, 2000, p. 21.

[12]   S. S. Gupte, A. Marcarno, D. Pradhan, C. F. Desai and N. Melikechi, “Laser Damage Studies in Zinc (Tris) Thio-urea Sulfate: Nonlinear Optical Crystal,” Journal of Applied Physics, Vol. 91, No. 5, 2002, pp. 74-76. doi:10.1063/1.1436287

[13]   X. Q. Wang, D. Xu, M. K. Lu, D. R. Yuan, S. X. Xu, S. Y. Guo, G. H. Zhang and J. R. Liu, “Crystal Growth and Characterization of a Novel Organometallic Nonli Near-Optical Crystal: MnHg(SCN)4(C2H6OS)2,” Journal of Crystal Growth, Vol. 224, No. 3-4, 2001, pp. 284-293. doi:10.1016/S0022-0248(01)01012-0

[14]   M. H. Jiang and Q. Fang, “Organic and Semiorganic Nonlinear Optical Materials,” Advanced Materials, Vol. 11, No. 13, 1999, p. 1147. doi:10.1002/(SICI)1521-4095(199909)11:13<1147::AID-ADMA1147>3.0.CO;2-H

[15]   J. Ramajothi and S. Dhanuskodi, “Crystal Growth, Thermal and Optical Studies on Phase Mat-chable New Organic Nlo Material for Blue-Green Laser Generation,” Journal of Crystal Growth, Vol. 289, No. 1, 2006, pp. 217-223. doi:10.1016/j.jcrysgro.2005.10.103

[16]   N. J. Long, “Organometallic Compounds for Nonlinear Optics—The Search Fenlightenment,” Angewante Chemie, Vol. 34, No. 1, 1995, pp. 21-38. doi:10.1002/anie.199500211

[17]   H. O. Marcy, L. F. Warren, M. S. Web, C. A. Ebbers, S. P. Velsko, G. C. Kennedy and G. C. Catella, “Second Harmonic Generation in Zinztris(thiouria) Sulphate,” Applied Optics, Vol. 31, No. 24, 1992, pp. 5051-5060. doi:10.1364/AO.31.005051

[18]   S. Koul, “Studies on Chemical Constituents of Adhatoda vasica, Prangos pabularia and Gloriosa superbe and Chemical Transformation of Their Major Constituents,” Ph.D. Thesis, University of Jammu, Jammu, 1981.

[19]   M. Yousaf, “Isolation and Structural Studies on the Chemical Constituents of Medicinal Plants Skimmia laureola and Witha niacoagulance,” Ph.D. Thesis, Karachi Uni- versity, Karachi, 1998.

[20]   H. Hussain, I. Ahmad, B. Schulz, S. Draeger, U. Florke, G. Pescitelli and K. Krohn, “Solid-State Circular Dichroism and Hydrogen Bonding: Absolute Configuration of Assarigenin A from Microsphaeropsis sp.,” Chirality, Vol. 23, No. 8, 2011, pp. 617-623. doi:10.1002/chir.20985

[21]   F. A. Mir, “Growth, Structural, Optical and Electrical Study of Na-Substituted Potassium Hy-drogen Tartarate Crystals,” The European Physical Journal of Applied Physics, Vol. 57, No. 2, 2012, Article ID 20202. doi:10.1051/epjap/2011110001

[22]   N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” 2nd Edition, Clarendon Press, Oxford, 1979.

[23]   F. Moser and F. Urbach “Optical Absorption of Pure Silver Halides,” Physical Review, Vol. 102, No. 6, 1956, pp. 1519-1523. doi:10.1103/PhysRev.102.1519