OPJ  Vol.2 No.1 , March 2012
Bragg-Angle Diffraction in Slant Gratings Fabricated by Single-Beam Interference Lithography
Abstract: A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and for optical path-length balancing are needed. Bragg-angle diffractions are observed as strong optical extinction that is tunable with changing the angle of incidence. This device is important for the design of efficient filters, beam splitters, and photonic devices.
Cite this paper: X. Zhang, S. Feng and T. Zhai, "Bragg-Angle Diffraction in Slant Gratings Fabricated by Single-Beam Interference Lithography," Optics and Photonics Journal, Vol. 2 No. 1, 2012, pp. 13-16. doi: 10.4236/opj.2012.21003.

[1]   W. W. Ng, C. S. Hong and A. Yariv, “Holographic Inter- ference Lithography for Integrated-Optics,” IEEE Trans- actions on Electron Devices, Vol. 25, No. 10, 1978, pp. 1193-1200. doi:10.1109/T-ED.1978.19251

[2]   V. Berger, O. Gauthier-Lafaye and E. Costard, “Photonic Band Gaps and Holography,” Journal of Applied Physics, Vol. 82, No. 1, 1997, pp. 60-64. doi:10.1063/1.365849

[3]   A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl and H. Giessen, “Waveguide-Plasmon Polaritons: Strong Cou- pling of Photonic and Electronic Resonances in A Metal- lic Photonic Crystal Slab,” Physical Review Letters, Vol. 91, No. 18, 2003, p. 183901. doi:10.1103/PhysRevLett.91.183901

[4]   J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. M. Lupton, T. A. Klar, J. Feld- mann, A. W. Holleitner, M. Forster and U. Scherf, “A Low Threshold Polymer Laser Based on Metallic Nano- particle Gratings,” Advanced Materials, Vol. 15, No. 20, 2003, pp. 1726-1729. doi:10.1002/adma.200305221

[5]   X. P. Zhang, H. M. Liu, J. R. Tian, Y. R. Song and L. Wang, “Band-Selective Optical Polarizer Based on Gold- Nanowire Plasmonic Diffraction Gratings,” Nano Letters, Vol. 8, No. 9, 2008, pp. 2653-2658. doi:10.1021/nl0808435

[6]   X. P. Zhang, H. M. Liu, J. R. Tian, Y. R. Song, L. Wang, J. Y. Song, and G. Z. Zhang, “Optical Polarizers Based on Gold Nanowires Fabricated Using Colloidal Gold Nanoparticles,” Nanotechnology, Vol. 19, No. 28, 2008, p. 285202. doi:10.1088/0957-4484/19/28/285202

[7]   X. P. Zhang, B. Q. Sun, J. M. Hodgkiss and R. H. Friend, “Tunable Ultrafast Optical Switching via Waveguided Gold Nanowires” Advanced Materials, Vol. 20, No. 23, 2008, pp. 4455-4459. doi:10.1002/adma.200801162

[8]   D. Nau, R. P. Bertram, K. Buse, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. Gippius, and H. Giessen, “Optical Switching in Metallic Photonic Crystal Slabs with Photoaddressable Polymers,” Applied Physics B—Lasers and Optics, Vol. 82, No. 4, 2006, pp. 543-547. doi:10.1007/s00340-005-2103-z

[9]   X. L. Yang, L. Z. Cai and Y. R. Wang, “Larger Bandgaps of Two-Dimensional Triangular Photonic Crystals Fabri- cated By Holographic Lithography Can Be Realized By Recording Geometry Design,” Optics Express, Vol. 12, No. 24, 2004, pp. 5850-5856. doi:10.1364/OPEX.12.005850

[10]   Y. Yang, Q. Li and G. P. Wang, “Design and Fabrication of Diverse Metamaterial Structures by Holographic Li- thography,” Optics Express, Vol. 16, No. 15, 2008, pp. 11275-11280. doi:10.1364/OE.16.011275

[11]   D. C. Meisel, M. Diem, M. Deubel, F. Pérez-Willard, S. Linden, D. Gerthsen, K. Busch and M. Wegener, “Shrin- kage Precompensation of Holographic Three-Dimen- sional Photonic-Crystal Templates,” Advanced Materials, Vol. 18, No. 22, 2006, pp. 2964-2968. doi:10.1002/adma.200600412

[12]   D. Rosenblatt, A. Sharon and A. A. Friesem, “Resonant Grating Waveguide Structures,” IEEE Journal of Quan- tum Electronics, Vol. 33, No. 11, 1997, pp. 2038-2059. doi:10.1109/3.641320