JMP  Vol.3 No.3 , March 2012
Mechanical Impedance of Cerebral Material
ABSTRACT
The tentative variation of the mechanical impedance, of a cylindrical sample of cerebral material, has been achieved by Vibrometer Laser according to the frequency. The studied matter is supposed homogeneous, isotropic and stationary. A multilayered mechanical model has been associated to the studied sample to simulate its vibration. The theoretical expression of mechanical impedance has been determined while taking the mechanical/electric analogy as a basis. A good adjustment of theoretical model parameters permitted us to have a good agreement theory/experience of the mechanical impedance variation according to the sample vibration frequency.

Cite this paper
M. Chakroun and H. Ghozlen, "Mechanical Impedance of Cerebral Material," Journal of Modern Physics, Vol. 3 No. 3, 2012, pp. 271-273. doi: 10.4236/jmp.2012.33037.
References
[1]   D. M. Sosin, J. E. Sniezek and R. J. Waxweiler, “Trends in Death Associated with Traumatic Brain Injury, 1979 through 1992,” Journal of the American Medical Asso- ciation, Vol. 273, No. 22, 1995, pp. 1778-1780. doi:10.1001/jama.1995.03520460060036

[2]   G. Fallenstein, V. Hulce and J. W. Melvin, “Dynamic Me- chanical Properties of Human Brain Tissue,” Journal of Biomechanics, Vol. 2, No. 3, 1969, pp. 217-226. doi:10.1016/0021-9290(69)90079-7

[3]   L. Z. Shuck and S. H. Advani, “Rheological Response of Human Brain Tissue in Shear,” Journal of Basic Engi- neering, Vol. 94, No. 4, 1972, pp. 905-911. doi:10.1115/1.3425588

[4]   F. Farmanzad, S. Najarian, M. R. Eslami and A. S. Seddi- ghi, “A Novel Model for Biomechanical Behavior of Hu- man Brain in Epidural Hematoma Injuries,” Bio-Medicals and Engineering, Vol. 17, No, 2, 2007, pp. 119-125.

[5]   K. L. Thibault and S. S. Margulies, “Age-Dependent Ma- terial Properties of the Porcine Cerebrum: Effect on Pedi- atric Inertial Head Injury Criteria,” Journal of Biome- chanics, Vol. 31 No.12, 1998, pp. 1119-1126. doi:10.1016/S0021-9290(98)00122-5

[6]   D. Brands, “The Large Shear Strain Dynamic Behaviour of in Vitro Porcine Brain Tissue and a Silicone Gel Model Material,” Stapp Car Crash Journal, Vol. 44, 2000, pp. 249-260.

[7]   S. Nicolle, M. Lounis, R. Willinger and K. Bekkour, “Car- actérisation et Modélisation du Tissu Cérébral de Porc,” 27ème Congrès de la Société de Biomécanique, Valen- ciennes, 12-13 September 2002.

[8]   S. Mehdizadeh, M. Khoshgoftar, S. Najarian and F. Far- manzad, “Comparison between Brain Tissue Gray and White Matters in Tension Including Necking Phenome- non,” American Journal of Applied Sciences, Vol. 5. No. 12, 2008, pp. 1701-1706. doi:10.3844/ajassp.2008.1701.1706

[9]   L. E. Thibault, T. A. Gennarelli and S. Margulies, “Physical Model Simulations of Brain Injury in the Primate,” Journal of Biomechanics, Vol. 23, No. 8, 1990, pp. 823- 836.

[10]   L. E. Bilston, Z. Z. Liu and N. Phan-Thien, “Lineaire Vis- coelactic Properties of Bovine Brain in Shear,” Journal of Biorheology, Vol. 34, No. 6, 1997, pp. 377-385. doi:10.1016/S0006-355X(98)00022-5

[11]   F. Farshad, M. Barbezat, P. Flüeler, F. Schmidlin, P. Grabe and P. Niederer, “Material Characterization of the Pig Kidney in Relation with the Biomechanical Analysis of Renal Trauma,” Journal of Biomechanics, Vol. 32, No. 4, 1999, pp. 417-425. doi:10.1016/S0021-9290(98)00180-8

[12]   C. W. Jamisson, R. Marangoni and A. Glaser, “Viscoelas- tic Properties of Soft Tissues by Discrete Model Charac- terization,” Journal of Biomechanics, Vol. 1, No. 1, 1968, pp. 33-46. doi:10.1016/0021-9290(68)90036-5

[13]   S. Park, R. Krishnan, S. Nicoll and G. Ateshian “Intersti- tial Fluid Load Support in Unconfined Compression”, Journal of Biomechanics, Vol. 36, No. 12, 2003, pp. 1785- 1796. doi:10.1016/S0021-9290(03)00231-8

[14]   M. Chakroun, M. H. Ben Ghozlen, I. Elloumi and S. Ni- colle, “Détermination du Module D’élasticité de la Ma- tière Cérébrale”, Compte Rendu Physique, Vol. 10, No. 2- 3, 2009, pp. 236-241. doi:10.1016/j.crhy.2009.03.010

 
 
Top