[1] G. F. R. Ellis, “Gelativistivc Cosmology: Its Nature Aims and Problems,” In: B. Bertotti, F. de Felici and A. Pascolini, Eds., General Relativity and Gravitation, Reidel, Dordrecht, 1984, pp. 215-588.
[2] G. F. R. Ellis and W. Stoeger, “Perturbed Spherically Symmetric Dust Solution of the Field Equations in Ob- servational Coordinates with Cosmological Data Func- tions,” Classical Quantum Gravity, Vol. 4, No. 6, 1987, p. 1697. doi:10.1088/0264-9381/4/6/025
[3] G. F. R. Ellis and T. Buchert, “The Universe Seen at Dif- ferent Scales,” Physics Letters A, Vol. 347, No. 1-3, 2005, pp. 38-46. doi:10.1016/j.physleta.2005.06.087
[4] R. A. Isaacson, “Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geo- metrical Optics,” Physical Reviews, Vol. 166, No. 5, 1968, pp. 1263-1272. doi:10.1103/PhysRev.166.1263
[5] R. A. Isaacson, “Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Effective Stress Tensor,” Physical Reviews, Vol. 166, No. 5, 1968, pp. 1272-1280. doi:10.1103/PhysRev.166.1272
[6] R. M. Zalaletdinov, “Averaging Problem in Cosmology and Macroscopic Gravity,” General Relativity Gravita- tion, Vol. 24, No. 10, 1992, pp. 1015-1031. doi:10.1007/BF00756944
[7] R. M. Zalaletdinov, “Towards a Theory of Macroscopic Gravity,” General Relativity Gravitation, Vol. 25, No. 7, 1993, pp. 673-695. doi:10.1007/BF00756937
[8] R. M. Zalaletdinov, “The Gravitational Polarization in General Relativity: Solution to Szekeres’ Model of Quad- rupole Polarization,” General Relativity Gravitation, Vol. 20, No. 19, 2003, pp. 4195-4212.
[9] M. Mars and R. M. Zalaletdinov, “Space-Time Averages in Macroscopic Gravity and Volume-Preserving Coordi- nates,” Journal of Mathematical Physics, Vol. 38, No. 9, 1997, p. 4741. doi:10.1063/1.532119
[10] A. A. Coley, N. Pelavas and R. M. Zalaletdinov, “Cos- mological Solutions in Macroscopic Gravity,” Physical Review Letters, Vol. 95, No. 15, 2005, p. 151102. doi:10.1103/PhysRevLett.95.151102
[11] A. A. Coley and N. Pelavas, “Averaging in Spherically Symmetric Cosmology,” Physical Review D, Vol. 75, No. 4, 2006, p. 043506. doi:10.1103/PhysRevD.75.043506
[12] A. A. Coley and N. Pelavas, “Averaging in Spherically Symmetric Cosmology,” Physical Review D, Vol. 74, No. 8, 2006, p. 087301. doi:10.1103/PhysRevD.74.087301
[13] J. Brannlund, R. J. van den Hoogen and A. Coley, “Av- eraging Geometrical Objects on a Differentiable Mani- fold,” International Journal of Modern Physics D, Vol. 19, No. 12, 2010, pp. 1915-1923. doi:10.1142/S0218271810018062
[14] A. Coley, “Averaging in Cosmological Models Using Scalars,” Classical Quantum Gravity, Vol. 27, No. 24, 2010, p. 245017. doi:10.1088/0264-9381/27/24/245017
[15] T. Buchert, “On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies,” General Relativity Gravitation, Vol. 32, No. 1, 2000, pp. 105-125. doi:10.1023/A:1001800617177
[16] T. Buchert, “On Average Properties of Inhomogeneous Fluids in General Relativity: Perfect Fluid Cosmologies,” General Relativity Gravitation, Vol. 33, No. 8, 2001, pp. 1381-1405. doi:10.1023/A:1012061725841
[17] S. Weinberg, “The Cosmological Constant Problem,” Re- views of Modern Physics, Vol. 61, No. 1, 1989, pp. 1-23. doi:10.1103/RevModPhys.61.1
[18] Y. J. Ng and H. van Dam, “A Small but Nonzero Cos- mological Constant,” International Journal of Modern Physics D, Vol. 10, No. 1, 2001, pp. 49-55. doi:10.1142/S0218271801000627
[19] D. R. Finkelstein, A. A. Galiautdinov and J. E. Baugh, “Clif- ford Algebra as Quantum Language,” Journal of Mathe- matical Physics, Vol. 42, No. 1, 2001, p. 340. doi:10.1063/1.1328077
[20] W. G. Unruh, “Time and the Interpretation of Canonical Quantum Gravity,” Physical Review D, Vol. 40, No. 4, 1989, pp. 1048-1052. doi:10.1103/PhysRevD.40.1048
[21] A. Einstein, “The Field Equations of Gravitation,” Preus- sische Akademie der Wissenschaften Berlin (Mathematical Physics), Vol. 1915, 1915, pp. 844-847.
[22] A. Einstein, “Cosmological Considerations in the General Theory of Relativity,” Preussische Akademie der Wissenschaften Berlin (Mathematical Physics), Vol. 1917, 1917, p. 142.
[23] A. Einstein, “Do Gravitational Fields Play an Essential Role in the Structure Of Elementary Particles of Matter,” Preussische Akademie der Wissenschaften Berlin (Mathe- matical Physics), Vol. 1919, 1919, p. 349.
[24] L. Smolin, “Quantization of Unimodular Loop Quantum Gravity,” Physical Review D, Vol. 80, No. 8, 2009, p. 084003.
[25] G. F. R. Ellis, J. Murugun and H. van Elst, “On the Trace- Free Einstein Equations as a Viable Alternative to Gen- eral Relativity,” Classical Quantum Gravity, Vol. 28, No. 22, 2011, p. 225007. doi:10.1088/0264-9381/28/22/225007
[26] D. J. Shaw and J. D. Barrow, “Testable Solution of the Cosmological Constant and Coincidence Problems,” Physi- cal Review D, Vol. 83, No. 4, 2011, p. 043518. doi:10.1103/PhysRevD.83.043518
[27] B. Li, T. P. Sotirou and J. D. Barrow, “(f)T Gravity and Local Loretz Invariance,” Physical Review D, Vol. 83, No. 6, 2011, p. 064035. doi:10.1103/PhysRevD.83.064035
[28] S. R. Green and R. M. Wald, “A New Framework for Treating Small Scale Inhomogeneities in Cosmology,” Physical Review D, Vol. 83, No. 8, 2011, p. 084020. doi:10.1103/PhysRevD.83.084020
[29] A. P. Billyard and A. A. Coley, “Interactions in Scalar Field Cosmology,” Physical Review D, Vol. 61, No. 8, 2000, p. 083503. doi:10.1103/PhysRevD.61.083503
[30] K. Bolejko, M. N. Celerier, C. Hellaby and A. Krasinski, “Structures in the Universe by Exact Methods; Formation, Evolution, Interactions,” Cambridge University Press, Cam- bridge, 2009. doi:10.1017/CBO9780511657405
[31] A. G. Riess, et al., “Observational Evidence from Super- novae for an Accelerating Universe and a Cosmological Constant,” The Astronomical Journal, Vol. 116, No. 3, 1998, p. 1009. doi:10.1086/300499
[32] S. Perlmutter, et al., “Measuring Cosmology with Supernovae,” The Astronomical Journal, Vol. 517, No. 2, 1999, p. 565. doi:10.1086/307221
[33] D. N. Spergel, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP, Observations: Determination of Cosmological Parameters,” The Astrophysical Journal Supplement Series, Vol. 148, No. 1, 2003, p. 175.
[34] D. L. Wiltshire, “Exact Solution to the Averaging Prob- lem in Cosmology,” Physical Review Letters, Vol. 99, No. 25, 2007, p. 251101. doi:10.1103/PhysRevLett.99.251101
[35] I. A. Brown, J. Behrend and K. A. Malik, “Gauges and Cosmological Backreaction,” Journal of Cosmology and Astroparticle Physics, Vol. 2009, No. 11, 2009, p. 027.
[36] A. Paranjape, “The Averaging Problem in Cosmology,” Ph.D. Thesis, Cornell University, Ithaca, 2009.