JQIS  Vol.2 No.1 , March 2012
Quantum Steganography Embedded Any Secret Text without Changing the Content of Cover Data
Abstract: Steganography is a technique hiding secret information within innocent-looking information (e.g., text, audio, image, video, and so on). In this paper, we propose a quantum steganography protocol using plain text as innocent-looking information called cover data. Our steganograpy protocol has three features. First, we can use any plain text that is inde-pendent of any secret message sent between parties. When we make stego data, we do not need to change the content of plain text at all. Second, embedded messages are not included in opened information (innocent-looking messages), but are included as phases of the entangled states. Finally, in quantum states shared between parties in advance, i.e., as quantum keys used when the parties recover secret messages from stego data, neither innocent-looking information nor the information of any secret message is included.
Cite this paper: T. Mihara, "Quantum Steganography Embedded Any Secret Text without Changing the Content of Cover Data," Journal of Quantum Information Science, Vol. 2 No. 1, 2012, pp. 10-14. doi: 10.4236/jqis.2012.21003.

[1]   P. W. Shor, “Polynomial-Time Algorithms for Prime Factoriza-tion and Discrete Logarithms on a Quantum Computer,” SIAM Journal of Computing, Vol. 26, No. 5, 1997, pp. 1484-1509. doi:10.1137/S0097539795293172

[2]   C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceedings of IEEE International Con-ference on Computers, Systems and Signal Processing, Banga-lore, 9-12 December 1984, pp. 175-179.

[3]   A. K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Physical Review Letters, Vol. 67, No. 6, 1991, pp. 661-663. doi:10.1103/PhysRevLett.67.661

[4]   C. H. Bennett, “Quan-tum Cryptography Using Any Two Nonorthogonal States,” Physical Review Letters, Vol. 68, No. 21, 1992, pp. 3121-3124. doi:10.1103/PhysRevLett.68.3121

[5]   H.-K. Lo and H. F. Chau, “Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances,” Science, Vol. 283, No. 5410, 1999, pp. 2050- 2056. doi:10.1126/science.283.5410.2050

[6]   D. Mayers, “Uncon-ditional Security in Quantum Cryptography,” Journal of the ACM, Vol. 48, No. 3, 2001, pp. 351-406. doi:10.1145/382780.382781

[7]   D. Mayers and A. Yao, “Quantum Cryptography with Imperfect Apparatus,” Proceed-ings of 39th Annual Symposium on Foundation of Computer Science, Palo Alto, 8-11 November 1998, pp. 503-509.

[8]   E. Biham, M. Boyer, P. O. Boykin, T. Mor and V. P. Roychowd-hury, “A Proof of the Security of Quantum Key Distribution,” Proceedings of 32nd Annual ACM Symposium on Theory of Computing, Portland, 21-23 May 2000, pp. 715-724.

[9]   P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Physical Review Letters, Vol. 85, No. 2, 2000, pp. 441-444. doi:10.1103/PhysRevLett.85.441

[10]   R. Cleve, D. Gottesman and H. K. Lo, “How to Share a Quantum Secret,” Physical Review Letters, Vol. 83, No. 3, 1999, pp. 648-651. doi:10.1103/PhysRevLett.83.648

[11]   B. M. Terhal, D. P. DiVincenzo and D. W. Leung, “Hiding Bits in Bell States,” Physical Review Letters, Vol. 86, No. 25, 2001, pp. 5807-5810. doi:10.1103/PhysRevLett.86.5807

[12]   D. P. Di Vincenzo, D. W. Leung and B. M. Terhal, “Quantum Data Hiding,” IEEE Transactions on Information Theory, Vol. 48, No. 3, 2002, pp. 580-598. doi:10.1109/18.985948

[13]   D. P. DiVincenzo, P. Hayden and B. M. Terhal, “Hiding Quantum Data,” Foundations of Physics, Vol. 33, No. 11, 2003, pp. 1629-1647. doi:10.1023/A:1026013201376

[14]   T. Eggeling and R. F. Werner, “Hiding Classical Data in Multipartite Quantum States,” Physical Review Letters, Vol. 89, No. 9, 2002, Article ID: 097905. doi:10.1103/PhysRevLett.89.097905

[15]   M. Curty and D. J. Santos, “Quantum Steganography,” 2nd Bielefeld Workshop on Quantum Information and Complexity, Bielefeld, 12-14 Octo-ber 2000, pp. 12-14.

[16]   S. Natori, “Why Quantum Steg-anography Can Be Stronger than Classical Steganography,” Quantum Computation and Information, Vol. 102, 2006, pp. 235-240. doi:10.1007/3-540-33133-6_9

[17]   Z.-G. Qu, X.-B. Chen, X.-J. Zhon, X.-X. Niu and Y.-X. Yang, “Novel Quantum Steg-anography with Large Payload,” Optics Communications, Vol. 283, No. 23, 2010, pp. 4782-4786. doi:10.1016/j.optcom.2010.06.083

[18]   Z.-G. Qu, X.-B. Chen, M.-X. Luo, X.-X. Niu and Y.-X. Yang, “Quantum Steganogra-phy with Large Payload Based on Entanglement Swapping of -Type Entangled States,” Optics Communications, Vol. 284, 2011, pp. 2075-2082. doi:10.1016/j.optcom.2010.12.031

[19]   J. Gea-Banacloche, “Hiding Messages in Quantum Data,” Journal of Mathematical Physics, Vol. 43, No. 9, 2002, pp. 4531-4536. doi:10.1063/1.1495073

[20]   K. Martin, “Steganographic Communication with Quantum Information,” Lecture Notes in Computer Science, Vol. 4567, 2007, pp. 32-49. doi:10.1007/978-3-540-77370-2_3

[21]   B. A. Shaw and T. A. Brun, “Quantum Steganography with Noisy Quantum Chan-nels,” Physical Review A, Vol. 83, No. 2, 2011, Article ID: 022310. doi:10.1103/PhysRevA.83.022310