AiM  Vol.2 No.1 , March 2012
Purification and Characterization of Thermostable Cellulase Free Xylanase from Pseudomonas Sp. XPB-6
ABSTRACT
Extracellular cellulase free xylanase from Pseudomonas sp. XPB-6 was purified to homogeneity with 2.15 fold of purity and 60.31% yield, respectively by ammonium sulfate precipitation and DEAE ion exchange chromatography. The protein was found to be a homotrimer consisting of three subunits of 41 kDa each and the native molecular weight of 123 kDa. The pH and temperature optimum for enzyme were 7.5 in 100 mM sodium phosphate buffer at 60°C and was stable to a high and broader range of pH and to a temperature up to 75°C. Kinetic experiments at 60°C gave Vmax and Km values of 144.92 U/mg and 0.60 mg·ml-1 respectively for birch wood xylan. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited 1 mM Hg2+ and Cu2+ while it was slightly inactivated by 1 mM Mg2+ and Pb2+. Shelf life of xylanase of Pseudomonas sp. XPB-6 was studied both at room temperature and 4°C. The enzyme was stable both at room temperature and at 4°C for 90 and 28 days respectively. The half-life of the enzyme was approximately 40 days at room temperature.

Cite this paper
P. Kumar Sharma and D. Chand, "Purification and Characterization of Thermostable Cellulase Free Xylanase from Pseudomonas Sp. XPB-6," Advances in Microbiology, Vol. 2 No. 1, 2012, pp. 17-25. doi: 10.4236/aim.2012.21003.
References
[1]   M. A. Correia, K. Mazumder, J. L. Brás, S. J. Firbank, Y. Zhu, R. J. Lewis, W. S. York, C. M. Fontes and H. J. Gilbert, “Structure and Function of an Arabinoxylan-Specific Xylanase,” The Journal of Biological Chemistry, Vol. 286, No. 25, 2011, pp. 22510-22520. doi:10.1074/jbc.M110.217315

[2]   M. S. Butt, M. T. Nadeem, Z. Ahmad and M. T. Sultan, “Xylanases in Baking Industry,” Food Technology and Biotechnology, Vol. 46, No. 1, 2008, pp. 22-31.

[3]   K. K. Wong, L. U. Tan and J. N. Saddler, “Multiplicity of β-1,4-Xylanase in Microorganisms: Functions and Applications,” Microbiology Reviews, Vol. 52, No. 3, 1988, pp. 305-317.

[4]   K. Poutanen, M. Tenkanen, H. Korte and J. Puls, “Accessory Enzymes Involved in the Hydrolysis of Xylans,” In: G. F. Leatham and M. E. Himmel, Eds., Enzymes in Biomass Conversion, American Chemical Society, Washington DC, 1991, pp. 426-433.

[5]   M. A. A. Al-Bari, M. M. S. Rahman, M. A. U. Islam, M. E. Flores and M. S. A. Bhuiyan, “Purification and Characterization of a β-(1,4)-Endoxylanase of Streptomyces bangladeshiensis sp.,” Research journal of Cell and Molecular Biology, Vol. 1, No. 1, 2007, pp. 31-36.

[6]   M. K. Bhatt, “Cellulases and Related Enzymes in Biotechnology,” Biotechnology Adventures, Vol. 18, No. 5, 2000, pp. 355-383. doi:10.1016/S0734-9750(00)00041-0

[7]   Q. K. Beg, M. Kapoor, L. Mahajan and G. S. Hoondal, “Microbial Xylanases and Their Industrial Applications: A Review,” Applied Microbiology and Biotechnology, Vol. 56, No. 3-4, 2001, pp. 326-338. doi:10.1007/s002530100704

[8]   S. Ninawe and R. C. Kuhad, “Bleaching of Wheat Straw-Rich Soda Pulp with Xylanase from a Thermoalkalophilic Streptomyces cyaneus SN 32,” Bioresource Technology, Vol. 97, No. 18, 2006, pp. 2291-2295. doi:10.1016/j.biortech.2005.10.035

[9]   R. C. Kuhad, M. Kapoor and K. Chaudhary, “Production of Xylanases from Streptomyces sp. M-83 Using Cost Effective Substrates and Its Application in Improving Digestibility of Monogastric Animal Feed,” Industrial Journal of Microbiology, Vol. 46, No. 2, 2006, pp. 109-119.

[10]   M. L. T. Polizeli, A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. S. Jorge and D. S. Amorim, “Xylanases from Fungi: Properties and Industrial Applications,” Applied Microbiology and Biotechnology, Vol. 67, No. 5, 2005, pp. 577-591. doi:10.1007/s00253-005-1904-7

[11]   J. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical Biochemistry, Vol. 31, No. 3, 1959, pp. 426-428. doi:10.1021/ac60147a030

[12]   R. K. Scopes, In: C. R. Cantor, Ed., Protein Purification, Springer-Verlag, New York, 1982, pp. 125-131.

[13]   E. C. Carmona, M. R. Brochetto-Braga, A. A. Pizzirani- Kleiner and J. A. Jorge, “Purification and Biochemical Characterization of an Endoxylanase from Aspergillus versicolor,” FEMS Microbiology Letters, Vol. 166, No. 2, 1998, pp. 311-315. doi:10.1111/j.1574-6968.1998.tb13906.x

[14]   M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3

[15]   U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4,” Nature, Vol. 227, 1970, pp. 3397-3407. doi:10.1038/227680a0

[16]   P. J. Blackshear, “System for Poly Acrylamide Gel Electrophoresis,” Methods in Enzymology, Vol. 104, 1984, pp. 237-255. doi:10.1016/S0076-6879(84)04093-3

[17]   D. M. Bollag and S. J. Edelstein, “Protein Concentration Determination,” In: D. M. Bollag and S. J. Edelstein, Eds., Protein Methods, Wiley-Liss, New York, 1991.

[18]   G. Menon, K. Mody, J. Keshri and B. Jha, “Isolation, Purification, and Characterization of Haloalkaline Xy- lanase from a Marine Bacillus pumilus Strain, GESF-1,” Biotechnology and Bioprocess Engineering, Vol. 15, No. 6, 2010, pp. 998-1005. doi:10.1007/s12257-010-0116-x

[19]   W. Shao, S. Deblois and J. Wiegel, “A High-Molecular- Weight, Cell-Associated Xylanase Isolated from Exponentially Growing Thermoanaerobacterium sp. Strain JW/SL-YS485,” Applied Environmental Microbiology, Vol. 61, No. 3, 1995, pp. 937-940.

[20]   A. Dhillon and S. Khanna, “Production of a Thermostable Alkalitolerant Xylanase from Bacillus circulans AB16 Grown on Wheat Straw,” World Journal of Microbiology and Biotechnology, Vol. 27, No. 4, 2000, pp. 325-327. doi:10.1023/A:1008911026606

[21]   A. Sanghi, N. Garg, V. K. Gupta, A. K. Mittal and R. C. Kuhad, “One-Step Purification and Characterization of Cellulase-Free Xylanase Produced by Alkalophilic Bacillus subtilis ASH,” Brazilian Journal of Microbiology, Vol. 4, No. 2, 2010, pp. 467-476. doi:10.1590/S1517-83822010000200029

[22]   A. Khasin, I. Alchanati and Y. Shoham, “Purification and Characterization of a Thermostable Xylanase from Bacillus stearothermophilus T-6,” Applied Microbiology and Biotechnology, Vol. 59, No. 6, 1993, pp. 1725-1730.

[23]   L. J. Yin, H. H. Lin, Y. I. Chiang and S. Jiang, “Bioproperties and purification of xylanase from Bacillus sp. YJ6,” Journal of Agricultural Food Chemistry, Vol. 58, No. 1, 2010, pp. 557-562. doi:10.1021/jf902777r

[24]   A. Ghesse and B. A. Gashe, “Production of Alkaline Xy- lanase by an Alkaliphilic Bacillus sp. Isolated from an Alkaline Soda Lake,” Journaj of Applied Microbiology, Vol. 83, No. 4, 1997, pp. 402-406.

[25]   T. Kavita, S. Gupta and R. C. Kuhad, “Properties and Application of a Partially Purified Alkaline Xylanase from an Alkalophilic Fungus Aspergillus nidulans KK-99,” Bioresource Technology, Vol. 85, No. 1, 2002, pp. 39-42. doi:10.1016/S0960-8524(02)00064-0

[26]   R. Muthezilan, R. Ashok and S. Jayalakshmi, “Production and Optimization of Thermostable Alkaline Xylanase by Penicillium oxalicum in Solid State Fermentation,” African Journal of Microbioogyl Research, 2007, pp. 20-28.

[27]   A. R. Shah and D. Madamwar, “Xylanase Production by a Newly Isolated Aspergillus foetidus Strain and Its Characterization,” Process Biochemistry, Vol. 40, No. 5, 2005, pp. 1763-1771. doi:10.1016/j.procbio.2004.06.041

[28]   A. Archana and T. Satyanarayana, “Purification and Characterization of a Cellulase-Free Xylanase of a Moderate Thermophile Bacillus licheniformis A99,” World Journal of Microbiology and Biotechnology, Vol. 19, No. 1, 2003, pp. 53-57. doi:10.1023/A:1022527702400

[29]   K. Virupakshi, K. L. Kyu and M. Tanticharoen, “Purification and Properties of a Xylan-Binding Endoxylanase from Alkaliphilic Bacillus sp. Strain K-1,” Applied Environmental Microbiology, Vol. 65, No. 2, 2005, pp. 694- 697.

[30]   P. Sa-Pereira, A. Mesquita, J. C. Durate, M. A. Barros and M. Costa-Ferreira, “Rapid Production of Thermostable Cellulose-Free Xylanase by a Strain of Bacillus subtilis and Its Properties,” Enzyme Microbial Technology, Vol. 30, No. 7, 2002, pp. 924-933. doi:10.1016/S0141-0229(02)00034-0

[31]   K. ChandraRaj and T. S. Chandraz, “Production of Cellulase-Poor Xylanase by a Newly Isolated Fungus Fxn1,” In: R. S. Kahlon, Ed., Perspectives in Microbiology, National Agriculture Technology Information Centre, 1996, pp. 269- 270.

[32]   L. P. M. Castro, B. A. Trejo-Aguilar and G. A. Osorio, “Thermostable Xylanases Produced at 37?C and 45?C by a Thermotolerant Aspergillus Strain,” FEMS Microbiology Letters, Vol. 146, No. 1, 1997, pp. 97-102.

[33]   S. R. Biswas, S. C. Jana, A. K. Mishra and G. Nanda, “Production, Purification and Characterization of Xylanase from a Hyperxylanolytic Mutant of Aspergillus ochraceus,” Biotechnology and Bioengineering, Vol. 35, No. 3, 1990, pp. 244-251. doi:10.1002/bit.260350305

[34]   J. Angayarkanni, M. Palaniswamy, B. V. Pradeep and K. Swaminathan, “Biochemical Substitution of Fungal Xy- lanases for Prebleaching of Hardwood Kraft Pulp,” African Journal of Biotechnology, Vol. 5, No. 10, 2006, pp. 921-929.

 
 
Top